Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

In vivo kinematics of a unique posterior-stabilized knee implant during a stepping exercise

Authors: Takatomo Mine, Kenji Hoshi, Kazuyoshi Gamada, Koichiro Ihara, Hiroyuki Kawamura, Ryutaro Kuriyama, Ryo Date

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

Stair-stepping motion is important in daily living, similar to gait. Knee prostheses need to have even more superior performance and stability in stair-stepping motion than in gait. The purpose of this analysis was to estimate in vivo knee motion in stair stepping and determine if this unique knee prosthesis function as designed.

Methods

A total of 20 patients with Bi-Surface posterior-stabilizing (PS) implants were assessed. The Bi-Surface PS knee is a posterior-cruciate substitute prosthesis with a unique ball-and-socket joint in the mid-posterior portion of the femoral and tibial components. Patients were examined during stair-stepping motion using a 2-dimensional to 3-dimensional registration technique.

Results

The kinematic pattern in step up was a medial pivot, in which the level of anteroposterior translation was very small. In step down, the kinematic pattern was neither a pivot shift nor a rollback. From minimum to maximum flexion, anterior femoral translation occurred slightly.

Conclusions

In this study, this unique implant had good joint stability during stair stepping. The joint’s stability during stair stepping was affected by the design of the femorotibial joint rather than post/cam engagement or the ball-and-socket joint.
Literature
1.
go back to reference Asano T, Akagi M, Tanaka K, Nakamura TJ. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.CrossRefPubMed Asano T, Akagi M, Tanaka K, Nakamura TJ. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.CrossRefPubMed
2.
go back to reference Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A. A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging. 1999;18:981–91.CrossRefPubMed Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A. A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging. 1999;18:981–91.CrossRefPubMed
3.
go back to reference Banks SA, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA. Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res. 2003;41:131–8.CrossRef Banks SA, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA. Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res. 2003;41:131–8.CrossRef
4.
go back to reference Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg. 1995;77B:884–9. Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg. 1995;77B:884–9.
5.
go back to reference Andriacchi TP, Johnson TS, Hurwitz DE, Natarajan RN. Musculoskeletal dynamics, locomotion, and clinical application. In: Huiskes 3rd R, editor. Basic Orthopaedic Biomechanics and Mechano-Biology. 3rd edition. Edited by Mow V. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 91–121. Andriacchi TP, Johnson TS, Hurwitz DE, Natarajan RN. Musculoskeletal dynamics, locomotion, and clinical application. In: Huiskes 3rd R, editor. Basic Orthopaedic Biomechanics and Mechano-Biology. 3rd edition. Edited by Mow V. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 91–121.
6.
go back to reference Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.CrossRefPubMed Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.CrossRefPubMed
7.
go back to reference Dennis DA, Mahfouz M, Komistek RD, Hoff W. In vivo determination normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.CrossRefPubMed Dennis DA, Mahfouz M, Komistek RD, Hoff W. In vivo determination normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.CrossRefPubMed
8.
go back to reference Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, et al. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg. 2000;82B:1199–200.CrossRef Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, et al. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg. 2000;82B:1199–200.CrossRef
9.
go back to reference Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of deep flexion kinematic in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg. 2002;84B:50–3.CrossRef Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of deep flexion kinematic in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg. 2002;84B:50–3.CrossRef
10.
go back to reference Stiehl JB, Dennis DA, Komistek RD, Crane HS. In vivo determination of condylar lift-off and screw-home in a mobile bearing total knee arthroplasty. J Arthroplasty. 1999;14:293–9.CrossRefPubMed Stiehl JB, Dennis DA, Komistek RD, Crane HS. In vivo determination of condylar lift-off and screw-home in a mobile bearing total knee arthroplasty. J Arthroplasty. 1999;14:293–9.CrossRefPubMed
11.
go back to reference Uvehammer J, Karrholm J, Brandsson S, Herberts P, Carlsson L, KArlsson J, et al. In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res. 2000;18:856–64.CrossRefPubMed Uvehammer J, Karrholm J, Brandsson S, Herberts P, Carlsson L, KArlsson J, et al. In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res. 2000;18:856–64.CrossRefPubMed
12.
go back to reference Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.CrossRefPubMed Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.CrossRefPubMed
13.
go back to reference Karrholm J, Jonsson H, Nilsson KG S. Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc. 1994;2:50–9.CrossRefPubMed Karrholm J, Jonsson H, Nilsson KG S. Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc. 1994;2:50–9.CrossRefPubMed
14.
go back to reference Dennis DA, Komisteck RD, Mahfouz M, Walker SA, Tucker A. A multicenter analysis of axial femotibial rotation after total knee arthroplasty. Clin Orthop. 2004;428:180–9.CrossRefPubMed Dennis DA, Komisteck RD, Mahfouz M, Walker SA, Tucker A. A multicenter analysis of axial femotibial rotation after total knee arthroplasty. Clin Orthop. 2004;428:180–9.CrossRefPubMed
15.
go back to reference Banks SA, Hodge WA. Design and activity dependence of kinematic in fixed and mobile-bearing knee arthroplasties. J Arthroplasty. 2004;19:187–93.CrossRef Banks SA, Hodge WA. Design and activity dependence of kinematic in fixed and mobile-bearing knee arthroplasties. J Arthroplasty. 2004;19:187–93.CrossRef
16.
17.
go back to reference Banks SA, Hodge WA. Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res. 2004;426:187–93.CrossRefPubMed Banks SA, Hodge WA. Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res. 2004;426:187–93.CrossRefPubMed
Metadata
Title
In vivo kinematics of a unique posterior-stabilized knee implant during a stepping exercise
Authors
Takatomo Mine
Kenji Hoshi
Kazuyoshi Gamada
Koichiro Ihara
Hiroyuki Kawamura
Ryutaro Kuriyama
Ryo Date
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0354-5

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue