Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Technical note

The importance of reaming the posterior femoral cortex before inserting lengthening nails and calculation of the amount of reaming

Authors: Metin Kucukkaya, Özgür Karakoyun, Mehmet Fatih Erol

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

Lengthening nails have been used to correct limb length discrepancy caused by different etiologies, as well as for post-traumatic reasons. Two important lengthening nail-related complications are damage to the distraction mechanism and femoral fractures around the nail tip. As a result of the curved anatomy of the femur, straight nails impinge on the anterior cortex. Therefore, proper reshaping of the medullary canal to accommodate straight lengthening nails is crucial for the prevention of this problem. Reaming the dense posterior cortex is important when aiming to insert a lengthening nail without incurring anterior cortex nail tip impingement-related complications. Posterior femoral cortex over-reaming is a solution to this situation.

Methods

Sixty patients received lengthening nails during 2008–2013, (ISKD, Fitbone, Precice). Posterior cortex rigid-reaming technique was used successfully in 45 retrograde femoral lengthening cases. The preoperatively planned posterior cortex amount was reamed until the impingement was overcome during the operation under fluoroscopic control for each case. Since the preoperative determination of posterior cortex reaming amount is time consuming and operator dependent, we evaluated the X-rays of the patients with computer software and conventional paper-based measurements. The effect of reaming the posterior cortical wall on the inclination of the nail tip to the anterior femoral cortex was detected with measurements on the preoperative and postoperative lateral femoral X-rays by using the CorelDRAW® Graphic Suite X6 software package (Corel, Inc., Ottawa, Ontario, Canada) software. On the same software, X-rays and the posterior reaming amount were also calculated.

Results

The mean age of the patients was 27 years (11–42), while the mean lengthening was 5.9 cm (2–14). The mean consolidation index was 1.05 (0.75–1.62), and the mean follow-up period was 31 months (range, 18–45 months). The mean distance of the osteotomy site to the intercondylar notch of the femur was 81.2 mm (±16.92). The mean displacement of the nail tip position was 15.42 mm (±4.77) on the measurements on the postoperative X-rays after nail insertion compared to the preoperative simulations on the templates. The mean posterior cortex reaming thickness was 3.68 mm (±1.02).

Conclusions

We derived a formula that allows the required amount of optimal posterior cortex reaming to be determined. No impingement-related complications or nail damage were observed.
Literature
1.
go back to reference Thaller PH, Furmetz J, Wolf F, Eilers T, Mutschler W. Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX((R)))-preliminary results. Injury. 2014;45 Suppl 1:S60–5.PubMedCrossRef Thaller PH, Furmetz J, Wolf F, Eilers T, Mutschler W. Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX((R)))-preliminary results. Injury. 2014;45 Suppl 1:S60–5.PubMedCrossRef
2.
go back to reference Singh S, Lahiri A, Iqbal M. The results of limb lengthening by callus distraction using an extending intramedullary nail (Fitbone) in non-traumatic disorders. J Bone Joint Surg. 2006;88(7):938–42.CrossRef Singh S, Lahiri A, Iqbal M. The results of limb lengthening by callus distraction using an extending intramedullary nail (Fitbone) in non-traumatic disorders. J Bone Joint Surg. 2006;88(7):938–42.CrossRef
3.
go back to reference Kucukkaya M, Karakoyun O, Sokucu S, Soydan R. Femoral lengthening and deformity correction using the Fitbone motorized lengthening nail. J Orthop Sci. 2015;20(1):149–54.PubMedPubMedCentralCrossRef Kucukkaya M, Karakoyun O, Sokucu S, Soydan R. Femoral lengthening and deformity correction using the Fitbone motorized lengthening nail. J Orthop Sci. 2015;20(1):149–54.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Buford Jr WL, Turnbow BJ, Gugala Z, Lindsey RW. Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma. 2014;28(1):10–6.PubMedCrossRef Buford Jr WL, Turnbow BJ, Gugala Z, Lindsey RW. Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma. 2014;28(1):10–6.PubMedCrossRef
6.
go back to reference Kanawati AJ, Jang B, McGee R, Sungaran J. The influence of entry point and radius of curvature on femoral intramedullary nail position in the distal femur. The Journal of orthopaedics. 2014;11(2):68–71.PubMedCrossRef Kanawati AJ, Jang B, McGee R, Sungaran J. The influence of entry point and radius of curvature on femoral intramedullary nail position in the distal femur. The Journal of orthopaedics. 2014;11(2):68–71.PubMedCrossRef
Metadata
Title
The importance of reaming the posterior femoral cortex before inserting lengthening nails and calculation of the amount of reaming
Authors
Metin Kucukkaya
Özgür Karakoyun
Mehmet Fatih Erol
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0345-6

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue