Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 1/2017

01-01-2017 | Original Article

In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force

Authors: Nobuo Takeshita, Masakazu Hasegawa, Kiyo Sasaki, Daisuke Seki, Masahiro Seiryu, Shunro Miyashita, Ikuko Takano, Toshihito Oyanagi, Yuki Miyajima, Teruko Takano-Yamamoto

Published in: Journal of Bone and Mineral Metabolism | Issue 1/2017

Login to get access

Abstract

Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Fields HW, Proffit WR (2012) Treatment of skeletal problems in children and preadolescents. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics, 5th edn. Mosby, St. Louis, pp 472–528 Fields HW, Proffit WR (2012) Treatment of skeletal problems in children and preadolescents. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics, 5th edn. Mosby, St. Louis, pp 472–528
5.
go back to reference Steenvoorden GP, van de Velde JP, Prahl-Andersen B (1990) The effect of duration and magnitude of tensile mechanical forces on sutural tissue in vivo. Eur J Orthod 12:330–339CrossRefPubMed Steenvoorden GP, van de Velde JP, Prahl-Andersen B (1990) The effect of duration and magnitude of tensile mechanical forces on sutural tissue in vivo. Eur J Orthod 12:330–339CrossRefPubMed
6.
go back to reference Miyawaki S, Forbes DP (1987) The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat. Am J Orthod Dentofac Orthop 92:123–133CrossRef Miyawaki S, Forbes DP (1987) The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat. Am J Orthod Dentofac Orthop 92:123–133CrossRef
7.
go back to reference Ten Cate AR, Freeman E, Dickinson JB (1977) Sutural development: structure and its response to rapid expansion. Am J Orthod 71:622–636CrossRefPubMed Ten Cate AR, Freeman E, Dickinson JB (1977) Sutural development: structure and its response to rapid expansion. Am J Orthod 71:622–636CrossRefPubMed
8.
go back to reference Mantila Roosa SM, Liu Y, Turner CH (2011) Gene expression patterns in bone following mechanical loading. J Bone Miner Res 26:100–112CrossRefPubMed Mantila Roosa SM, Liu Y, Turner CH (2011) Gene expression patterns in bone following mechanical loading. J Bone Miner Res 26:100–112CrossRefPubMed
9.
go back to reference Yang R, Amir J, Liu H, Chaqour B (2008) Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36:1–14CrossRefPubMedPubMedCentral Yang R, Amir J, Liu H, Chaqour B (2008) Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36:1–14CrossRefPubMedPubMedCentral
10.
go back to reference Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829CrossRefPubMed Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829CrossRefPubMed
11.
go back to reference Lenton KA, Nacamuli RP, Wan DC, Helms JA, Longaker MT (2005) Cranial suture biology. Curr Top Dev Biol 66:287–328CrossRefPubMed Lenton KA, Nacamuli RP, Wan DC, Helms JA, Longaker MT (2005) Cranial suture biology. Curr Top Dev Biol 66:287–328CrossRefPubMed
12.
13.
go back to reference Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143CrossRefPubMed Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143CrossRefPubMed
14.
go back to reference James AW, Theologis AA, Brugmann SA, Xu Y, Carre AL, Leucht P, Hamilton K, Korach KS, Longaker MT (2009) Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PLoS One 4:e7120CrossRefPubMedPubMedCentral James AW, Theologis AA, Brugmann SA, Xu Y, Carre AL, Leucht P, Hamilton K, Korach KS, Longaker MT (2009) Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PLoS One 4:e7120CrossRefPubMedPubMedCentral
15.
go back to reference Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721–730CrossRefPubMedPubMedCentral Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721–730CrossRefPubMedPubMedCentral
16.
go back to reference Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 73:148–152CrossRefPubMedPubMedCentral Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 73:148–152CrossRefPubMedPubMedCentral
17.
18.
go back to reference Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266PubMed Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266PubMed
19.
go back to reference Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB (1996) Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 271:29483–29488CrossRefPubMed Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB (1996) Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 271:29483–29488CrossRefPubMed
20.
go back to reference Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273:3639–3649CrossRefPubMed Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273:3639–3649CrossRefPubMed
21.
go back to reference Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, Masuda T, Anada T, Kato R, Kitaura H, Suzuki O, Takano-Yamamoto T (2014) Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res 29:1244–1257CrossRefPubMed Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, Masuda T, Anada T, Kato R, Kitaura H, Suzuki O, Takano-Yamamoto T (2014) Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res 29:1244–1257CrossRefPubMed
22.
go back to reference Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791CrossRefPubMedPubMedCentral Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791CrossRefPubMedPubMedCentral
23.
go back to reference Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001CrossRefPubMed Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001CrossRefPubMed
25.
go back to reference Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17:386–396CrossRefPubMedPubMedCentral Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17:386–396CrossRefPubMedPubMedCentral
26.
go back to reference Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS (2008) Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 74:879–889CrossRefPubMedPubMedCentral Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS (2008) Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 74:879–889CrossRefPubMedPubMedCentral
27.
go back to reference Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462CrossRefPubMedPubMedCentral Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462CrossRefPubMedPubMedCentral
28.
go back to reference Dan P, Velot É, Decot V, Menu P (2015) The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 128:2415–2422CrossRefPubMed Dan P, Velot É, Decot V, Menu P (2015) The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 128:2415–2422CrossRefPubMed
29.
go back to reference Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ (2009) Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108:1263–1273CrossRefPubMed Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ (2009) Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108:1263–1273CrossRefPubMed
30.
go back to reference Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715CrossRefPubMed Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715CrossRefPubMed
31.
go back to reference Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, Kawashima H (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32CrossRefPubMed Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, Kawashima H (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32CrossRefPubMed
32.
go back to reference Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, Cole RM, Gilbert SR, Clemens TL, Morgan EF, Einhorn TA, Gerstenfeld LC (2008) Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23:596–609CrossRefPubMedPubMedCentral Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, Cole RM, Gilbert SR, Clemens TL, Morgan EF, Einhorn TA, Gerstenfeld LC (2008) Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23:596–609CrossRefPubMedPubMedCentral
33.
go back to reference Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838CrossRefPubMed Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838CrossRefPubMed
34.
go back to reference Yoshida T, Yamashita M, Hayashi M (2012) Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem 287:25706–25714CrossRefPubMedPubMedCentral Yoshida T, Yamashita M, Hayashi M (2012) Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem 287:25706–25714CrossRefPubMedPubMedCentral
35.
go back to reference Nishida T, Kondo S, Maeda A, Kubota S, Lyons KM, Takigawa M (2009) CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition. Bone 44:24–31CrossRefPubMed Nishida T, Kondo S, Maeda A, Kubota S, Lyons KM, Takigawa M (2009) CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition. Bone 44:24–31CrossRefPubMed
36.
go back to reference Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L (2012) Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 318:2105–2115CrossRefPubMed Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L (2012) Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 318:2105–2115CrossRefPubMed
37.
go back to reference Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL, Lei JX, Liao EY, Yuan X (2011) Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28:297–304CrossRefPubMed Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL, Lei JX, Liao EY, Yuan X (2011) Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28:297–304CrossRefPubMed
38.
go back to reference Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567CrossRefPubMed Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567CrossRefPubMed
39.
go back to reference Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179CrossRefPubMed Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179CrossRefPubMed
40.
go back to reference Zippel N, Malik RA, Frömel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-β-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33:2792–2799CrossRefPubMed Zippel N, Malik RA, Frömel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-β-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33:2792–2799CrossRefPubMed
41.
go back to reference Torsoni AS, Fonseca PM, Crosara-Alberto DP, Franchini KG (2003) Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol 284:C1411–C1419CrossRefPubMed Torsoni AS, Fonseca PM, Crosara-Alberto DP, Franchini KG (2003) Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol 284:C1411–C1419CrossRefPubMed
42.
go back to reference Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553CrossRefPubMedPubMedCentral Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553CrossRefPubMedPubMedCentral
43.
go back to reference Zhu F, Zhang Z, Wu G, Li Z, Zhang R, Ren J, Nong L (2011) Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Med Oncol 28:565–571CrossRefPubMed Zhu F, Zhang Z, Wu G, Li Z, Zhang R, Ren J, Nong L (2011) Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Med Oncol 28:565–571CrossRefPubMed
44.
45.
go back to reference Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24:3186–3195CrossRefPubMedPubMedCentral Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24:3186–3195CrossRefPubMedPubMedCentral
46.
go back to reference Honjo T, Kubota S, Kamioka H, Sugawara Y, Ishihara Y, Yamashiro T, Takigawa M, Takano-Yamamoto T (2012) Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress. J Cell Commun Signal 6:225–232CrossRefPubMedPubMedCentral Honjo T, Kubota S, Kamioka H, Sugawara Y, Ishihara Y, Yamashiro T, Takigawa M, Takano-Yamamoto T (2012) Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress. J Cell Commun Signal 6:225–232CrossRefPubMedPubMedCentral
Metadata
Title
In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force
Authors
Nobuo Takeshita
Masakazu Hasegawa
Kiyo Sasaki
Daisuke Seki
Masahiro Seiryu
Shunro Miyashita
Ikuko Takano
Toshihito Oyanagi
Yuki Miyajima
Teruko Takano-Yamamoto
Publication date
01-01-2017
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 1/2017
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-016-0737-z

Other articles of this Issue 1/2017

Journal of Bone and Mineral Metabolism 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.