Skip to main content
Top
Published in: Osteoporosis International 2/2008

01-02-2008 | Original Article

In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method

Authors: S. Kolta, S. Quiligotti, A. Ruyssen-Witrand, A. Amido, D. Mitton, A. Le Bras, W. Skalli, C. Roux

Published in: Osteoporosis International | Issue 2/2008

Login to get access

Abstract

Summary

We used a standard DXA device equipped with a C-arm to do in vivo reconstruction of human vertebrae from two orthogonal scans. This new technique, called 3D-XA (three-dimensional X-ray absorptiometry), allows the direct measurement of geometric parameters of the vertebrae with a good accuracy and precision.

Introduction

Geometric parameters are predictors of bone strength. A technique called three-dimensional X-ray absorptiometry (3D-XA) allows 3D reconstruction of bones from DXA scans. We used the 3D-XA method to reconstruct human vertebrae and to evaluate the method’s in vitro accuracy and in vivo precision.

Methods

A standard DXA device equipped with a C-arm was used. Calibration of its environment and identification of different anatomical landmarks of the vertebrae allows personalized 3D geometric reconstruction of vertebrae. Accuracy was calculated by reconstructing 16 dry human vertebrae by 3D-XA and CT scanner. In vivo inter-observer precision was calculated using 20 human spines.

Results

The mean difference between 3D reconstruction by CT and 3D-XA was −0.2 ± 1.3 mm. The in vivo mean difference of the 3D-XA method between the two rheumatologists was −0.1 ± 0.8 mm. For geometric parameters, mean difference ranged from 0.4 to 0.9 mm. For cross-sectional area and vertebral body volume, it was 2.9% and 3.2%, respectively.

Conclusion

This study shows the good accuracy and precision of 3D-XA using a standard DXA device. It yields complementary information on bone geometry. Further studies are needed to evaluate if, coupled with bone density, it improves vertebral fracture risk prediction.
Literature
1.
go back to reference Ensrud KE, Thompson DE, Cauley JA et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriatr Soc 48:241–249PubMed Ensrud KE, Thompson DE, Cauley JA et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriatr Soc 48:241–249PubMed
2.
go back to reference Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561PubMedCrossRef Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561PubMedCrossRef
3.
go back to reference Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiologically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800PubMed Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiologically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800PubMed
4.
go back to reference Huang C, Ross PD, Washnich RD (1996) Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med 156:2469–2475PubMedCrossRef Huang C, Ross PD, Washnich RD (1996) Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med 156:2469–2475PubMedCrossRef
5.
go back to reference Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRef Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRef
6.
go back to reference Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fracture. Lancet 1:72–75CrossRef Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fracture. Lancet 1:72–75CrossRef
7.
go back to reference Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20:1813–1819PubMedCrossRef Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20:1813–1819PubMedCrossRef
8.
go back to reference Liao EY, Wu XP, Liao HJ, Zhang H, Peng J (2004) Effects of skeletal size of the lumbar spine on areal bone density, volumetric bone density and the diagnosis of osteoporosis in post menopausal women in China. J Bone Miner Metab 22:270–277PubMedCrossRef Liao EY, Wu XP, Liao HJ, Zhang H, Peng J (2004) Effects of skeletal size of the lumbar spine on areal bone density, volumetric bone density and the diagnosis of osteoporosis in post menopausal women in China. J Bone Miner Metab 22:270–277PubMedCrossRef
9.
go back to reference Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110PubMedCrossRef Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110PubMedCrossRef
10.
11.
go back to reference Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W (1994) Gender differences in vertebral body sizes in adults: biomechanical implications. Radiology 190:678–682PubMed Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W (1994) Gender differences in vertebral body sizes in adults: biomechanical implications. Radiology 190:678–682PubMed
12.
go back to reference Riggs BL, Melton LJ III, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRef Riggs BL, Melton LJ III, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRef
13.
go back to reference Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. J Clin Invest 95:2332–2337PubMedCrossRef Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. J Clin Invest 95:2332–2337PubMedCrossRef
14.
go back to reference Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1902PubMedCrossRef Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1902PubMedCrossRef
15.
go back to reference Deng HW, Xu FH, Davies KM et al (2002) Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J Bone Miner Metab 20:358–366PubMedCrossRef Deng HW, Xu FH, Davies KM et al (2002) Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J Bone Miner Metab 20:358–366PubMedCrossRef
16.
go back to reference Ross P, Huang C, Davis J, Wasnich R (1995) Vertebral dimension measurements improve prediction of vertebral fracture incidence. Bone 16:S257–S262CrossRef Ross P, Huang C, Davis J, Wasnich R (1995) Vertebral dimension measurements improve prediction of vertebral fracture incidence. Bone 16:S257–S262CrossRef
17.
go back to reference Link TM, Dören M, Lewing G, Meier N, Heinecke A, Rummeny E (2000) Cross-sectional area of lumbar vertebrae in peri-and postmenopausal patients with and without osteoporosis. Osteoporos Int 11:304–309PubMedCrossRef Link TM, Dören M, Lewing G, Meier N, Heinecke A, Rummeny E (2000) Cross-sectional area of lumbar vertebrae in peri-and postmenopausal patients with and without osteoporosis. Osteoporos Int 11:304–309PubMedCrossRef
18.
go back to reference Mitton D, Landry C, Veron S, Skalli W, Lavaste F, de Guise JA (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38(2):133–139PubMedCrossRef Mitton D, Landry C, Veron S, Skalli W, Lavaste F, de Guise JA (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38(2):133–139PubMedCrossRef
19.
go back to reference Pomero V, Mitton D, Laporte S, De Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech 19:240–247CrossRef Pomero V, Mitton D, Laporte S, De Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech 19:240–247CrossRef
20.
go back to reference Kolta S, Le Bras A, Mitton D et al (2005) The 3-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual energy X-ray absorptiometry device. Osteoporos Int 16:969–976PubMedCrossRef Kolta S, Le Bras A, Mitton D et al (2005) The 3-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual energy X-ray absorptiometry device. Osteoporos Int 16:969–976PubMedCrossRef
21.
go back to reference Trochu F (1993) A contouring program based on dual kriging interpolation. Eng Comput 9:160–177CrossRef Trochu F (1993) A contouring program based on dual kriging interpolation. Eng Comput 9:160–177CrossRef
22.
go back to reference Mitulescu A, Semaan I, De Guise JA, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39(2):152–158PubMedCrossRef Mitulescu A, Semaan I, De Guise JA, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39(2):152–158PubMedCrossRef
23.
go back to reference Landry C, De Guise JA, Dansereau J et al (1997) Analyse infographique des déformations tridimensionnelles des vertèbres scoliotiques. Ann Chir 51:868–874PubMed Landry C, De Guise JA, Dansereau J et al (1997) Analyse infographique des déformations tridimensionnelles des vertèbres scoliotiques. Ann Chir 51:868–874PubMed
24.
go back to reference Gluer CC, Eastell R, Reid D et al (2004) Association of five ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population based sample: the OPUS study. J Bone Miner Res 19:782–793PubMedCrossRef Gluer CC, Eastell R, Reid D et al (2004) Association of five ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population based sample: the OPUS study. J Bone Miner Res 19:782–793PubMedCrossRef
25.
go back to reference Sone T, Tomomitsu T, Miyake M, Takeda N, Fukunaga M (1997) Age related changes in vertebral height ratios and vertebral fracture. Osteoporos Int 7:113–118PubMedCrossRef Sone T, Tomomitsu T, Miyake M, Takeda N, Fukunaga M (1997) Age related changes in vertebral height ratios and vertebral fracture. Osteoporos Int 7:113–118PubMedCrossRef
26.
go back to reference Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 16:120–127PubMedCrossRef Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 16:120–127PubMedCrossRef
27.
go back to reference Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16:2276–2283PubMedCrossRef Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16:2276–2283PubMedCrossRef
28.
go back to reference Nielsen SP, Hermansen F, Barenholdt O (1993) Interpretation of lumbar spine densitometry in women with fractures. Osteoporos Int 3:276–282PubMedCrossRef Nielsen SP, Hermansen F, Barenholdt O (1993) Interpretation of lumbar spine densitometry in women with fractures. Osteoporos Int 3:276–282PubMedCrossRef
29.
go back to reference Sievaänen H, Kannus P, Oja P, Vuori I (1994) Dual energy X-ray absorptiometry is also an accurate and precise method to measure the dimensions of human long bones. Calcif Tissue Int 54:101–105CrossRef Sievaänen H, Kannus P, Oja P, Vuori I (1994) Dual energy X-ray absorptiometry is also an accurate and precise method to measure the dimensions of human long bones. Calcif Tissue Int 54:101–105CrossRef
30.
go back to reference Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590PubMedCrossRef Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590PubMedCrossRef
31.
go back to reference Mosekilde L, Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11:67–73PubMedCrossRef Mosekilde L, Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11:67–73PubMedCrossRef
32.
go back to reference Nieves JW, Formica C, Ruffing J et al (2005) Males have larger skeletal size ans bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMedCrossRef Nieves JW, Formica C, Ruffing J et al (2005) Males have larger skeletal size ans bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMedCrossRef
33.
go back to reference Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dysmorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2275PubMedCrossRef Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dysmorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2275PubMedCrossRef
34.
go back to reference Rehman Q, Lang TF, Arnaud CD, Modin GW, Lane NE (2003) Treatment with parathyroid hormone is associated with an increase in vertebral cross-sectional area in post menopausal women with glucocorticoïd-induced osteoporosis. Osteoporos Int 14:77–91PubMedCrossRef Rehman Q, Lang TF, Arnaud CD, Modin GW, Lane NE (2003) Treatment with parathyroid hormone is associated with an increase in vertebral cross-sectional area in post menopausal women with glucocorticoïd-induced osteoporosis. Osteoporos Int 14:77–91PubMedCrossRef
35.
go back to reference Rauch F, Plotkin H, Zeitlin L, Glorieux FH (2003) Bone mass, size and density in children and adolescent with osteogenesis imperfecta: effect of intravenous pamidronate. Therapy 18:610–614 Rauch F, Plotkin H, Zeitlin L, Glorieux FH (2003) Bone mass, size and density in children and adolescent with osteogenesis imperfecta: effect of intravenous pamidronate. Therapy 18:610–614
36.
go back to reference Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef
37.
go back to reference Eswaran S, Gupta A, Adams MF, Keavney TM (2006) Cortical and trabecular load sharing in the lumbar vertebral body. J Bone Miner Res 21:307–314PubMedCrossRef Eswaran S, Gupta A, Adams MF, Keavney TM (2006) Cortical and trabecular load sharing in the lumbar vertebral body. J Bone Miner Res 21:307–314PubMedCrossRef
Metadata
Title
In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method
Authors
S. Kolta
S. Quiligotti
A. Ruyssen-Witrand
A. Amido
D. Mitton
A. Le Bras
W. Skalli
C. Roux
Publication date
01-02-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 2/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0447-4

Other articles of this Issue 2/2008

Osteoporosis International 2/2008 Go to the issue