Skip to main content
Top
Published in: Diabetologia 1/2013

01-01-2013 | Short Communication

In vitro scan for enhancers at the TCF7L2 locus

Authors: D. Savic, S. Y. Park, K. A. Bailey, G. I. Bell, M. A. Nobrega

Published in: Diabetologia | Issue 1/2013

Login to get access

Abstract

Aims/hypothesis

Recent functional characterisations of genome-wide association study (GWAS) loci suggest that cis-regulatory variation may be a common paradigm for complex disease susceptibility. Several studies point to a similar mechanism at the transcription factor 7-like 2 (TCF7L2) GWAS locus for type 2 diabetes. To address this possibility, we carried out an in vitro scan of this diabetes-associated locus to fine-map cis-regulatory sequences within this genomic interval.

Methods

A systematic cell-based enhancer strategy was employed to interrogate all sequences within the 92 kb type-2-diabetes-association interval for cis-regulatory activity in a panel of cell lines (HCT-116, Neuro-2a, C2C12, U2OS, MIN6 and HepG2). We further evaluated chromatin state at a subset of these regions in HCT-116 and U2OS cells and examined allelic-specific enhancer properties at the type-2-diabetes-associated single nucleotide polymorphism (SNP) rs7903146.

Results

In total, we assigned cis-regulatory activity to approximately 30% (9/28) of constructs tested. Notably, a subset of enhancers was active across multiple cell lines and overlapped with key epigenetic markers suggestive of cis-regulatory sequences. We further replicated the allelic-specific properties for SNP rs7903146 in pancreatic beta cells and additionally demonstrate identical allelic-specific enhancer effects in other cell lines.

Conclusions

These results provide a detailed map of cis-regulatory elements within the TCF7L2 GWAS locus and support the hypothesis of cis-regulatory variation leading to type 2 diabetes predisposition. The detection of allelic-specific effects for SNP rs7903146 in multiple cell lines further alludes to the likelihood of a peripheral defect in disease aetiology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sakabe NJ, Savic D, Nobrega MA (2012) Transcriptional enhancers in development and disease. Genome Biol 13:238PubMedCrossRef Sakabe NJ, Savic D, Nobrega MA (2012) Transcriptional enhancers in development and disease. Genome Biol 13:238PubMedCrossRef
2.
go back to reference Cauchi S, El Achhab Y, Choquet H et al (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 85:777–782PubMedCrossRef Cauchi S, El Achhab Y, Choquet H et al (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 85:777–782PubMedCrossRef
3.
go back to reference Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA (2011) Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res 21:1417–1425PubMedCrossRef Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA (2011) Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res 21:1417–1425PubMedCrossRef
4.
go back to reference Gaulton KJ, Nammo T, Pasquali L et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259PubMedCrossRef Gaulton KJ, Nammo T, Pasquali L et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259PubMedCrossRef
5.
go back to reference Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163PubMedCrossRef Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163PubMedCrossRef
6.
go back to reference Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K (2008) Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57:645–653PubMedCrossRef Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K (2008) Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57:645–653PubMedCrossRef
7.
go back to reference Loder MK, da Silva XG, McDonald A, Rutter GA (2008) TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta-cells. Biochem Soc Trans 36:357–359PubMedCrossRef Loder MK, da Silva XG, McDonald A, Rutter GA (2008) TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta-cells. Biochem Soc Trans 36:357–359PubMedCrossRef
8.
go back to reference Figeac F, Uzan B, Faro M, Chelali N, Portha B, Movassat J (2010) Neonatal growth and regeneration of beta-cells are regulated by the Wnt/beta-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab 298:E245–E256PubMedCrossRef Figeac F, Uzan B, Faro M, Chelali N, Portha B, Movassat J (2010) Neonatal growth and regeneration of beta-cells are regulated by the Wnt/beta-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab 298:E245–E256PubMedCrossRef
9.
go back to reference Stitzel ML, Sethupathy P, Pearson DS et al (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12:443–455PubMedCrossRef Stitzel ML, Sethupathy P, Pearson DS et al (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12:443–455PubMedCrossRef
10.
go back to reference Savic D, Bell GI, Nobrega MA (2012) An in vivo cis-regulatory screen at the type 2 diabetes associated TCF7L2 locus identifies multiple tissue-specific enhancers. PLoS One 7:e36501PubMedCrossRef Savic D, Bell GI, Nobrega MA (2012) An in vivo cis-regulatory screen at the type 2 diabetes associated TCF7L2 locus identifies multiple tissue-specific enhancers. PLoS One 7:e36501PubMedCrossRef
11.
go back to reference Helgason A, Palsson S, Thorleifsson G et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225PubMedCrossRef Helgason A, Palsson S, Thorleifsson G et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225PubMedCrossRef
12.
go back to reference Sousa AG, Marquezine GF, Lemos PA et al (2009) TCF7L2 polymorphism rs7903146 is associated with coronary artery disease severity and mortality. PLoS One 4:e7697PubMedCrossRef Sousa AG, Marquezine GF, Lemos PA et al (2009) TCF7L2 polymorphism rs7903146 is associated with coronary artery disease severity and mortality. PLoS One 4:e7697PubMedCrossRef
13.
go back to reference Hansen T, Ingason A, Djurovic S et al (2011) At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry 70:59–63PubMedCrossRef Hansen T, Ingason A, Djurovic S et al (2011) At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry 70:59–63PubMedCrossRef
14.
go back to reference Folsom AR, Pankow JS, Peacock JM, Bielinski SJ, Heiss G, Boerwinkle E (2008) Variation in TCF7L2 and increased risk of colon cancer: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 31:905–909PubMedCrossRef Folsom AR, Pankow JS, Peacock JM, Bielinski SJ, Heiss G, Boerwinkle E (2008) Variation in TCF7L2 and increased risk of colon cancer: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 31:905–909PubMedCrossRef
15.
go back to reference Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110PubMedCrossRef Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110PubMedCrossRef
Metadata
Title
In vitro scan for enhancers at the TCF7L2 locus
Authors
D. Savic
S. Y. Park
K. A. Bailey
G. I. Bell
M. A. Nobrega
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 1/2013
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2730-y

Other articles of this Issue 1/2013

Diabetologia 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.