Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

In vitro comparison of the osteogenic capability of human pulp stem cells on alloplastic, allogeneic, and xenogeneic bone scaffolds

Authors: Marius Heitzer, Ali Modabber, Xing Zhang, Philipp Winnand, Qun Zhao, Felix Marius Bläsius, Eva Miriam Buhl, Michael Wolf, Sabine Neuss, Frank Hölzle, Frank Hildebrand, Johannes Greven

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts.

Methods

Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation.

Results

Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds.

Conclusion

DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.
Literature
1.
go back to reference Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018;233(4):2815–23.CrossRef Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018;233(4):2815–23.CrossRef
2.
go back to reference Choi NY, Lee Y, Park YS, Ko K, Park B, Koh YG. Establishment of an integration-free human induced pluripotent stem cell line (TJCi001-A) from normal bone marrow-derived mesenchymal stem cells. Stem Cell Res. 2021;55: 102484.CrossRef Choi NY, Lee Y, Park YS, Ko K, Park B, Koh YG. Establishment of an integration-free human induced pluripotent stem cell line (TJCi001-A) from normal bone marrow-derived mesenchymal stem cells. Stem Cell Res. 2021;55: 102484.CrossRef
3.
go back to reference Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE. 2012;7(10): e47559.CrossRef Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE. 2012;7(10): e47559.CrossRef
4.
go back to reference Path G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus—Focus on mesenchymal stem cells. Metabolism. 2019;90:1–15.CrossRef Path G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus—Focus on mesenchymal stem cells. Metabolism. 2019;90:1–15.CrossRef
5.
go back to reference Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.CrossRef Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.CrossRef
6.
go back to reference Imanishi Y, Hata M, Matsukawa R, Aoyagi A, Omi M, Mizutani M, et al. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm Regen. 2021;41(1):12.CrossRef Imanishi Y, Hata M, Matsukawa R, Aoyagi A, Omi M, Mizutani M, et al. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm Regen. 2021;41(1):12.CrossRef
7.
go back to reference Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:5173732.CrossRef Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:5173732.CrossRef
8.
go back to reference Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health. 2021;21(1):263.CrossRef Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health. 2021;21(1):263.CrossRef
9.
go back to reference Son YB, Kang YH, Lee HJ, Jang SJ, Bharti D, Lee SL, et al. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17beta-estradiol on efficiency. BMC Oral Health. 2021;21(1):15.CrossRef Son YB, Kang YH, Lee HJ, Jang SJ, Bharti D, Lee SL, et al. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17beta-estradiol on efficiency. BMC Oral Health. 2021;21(1):15.CrossRef
10.
go back to reference Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health. 2015;15:132.CrossRef Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health. 2015;15:132.CrossRef
11.
go back to reference Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva IC, Pocas-Fonseca MJ, et al. Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J. 2012;45(12):1080–90.CrossRef Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva IC, Pocas-Fonseca MJ, et al. Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J. 2012;45(12):1080–90.CrossRef
12.
go back to reference Huang AH, Chen YK, Chan AW, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod. 2009;35(5):673–81.CrossRef Huang AH, Chen YK, Chan AW, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod. 2009;35(5):673–81.CrossRef
13.
go back to reference Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, et al. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials. 2014;35(35):9459–72.CrossRef Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, et al. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials. 2014;35(35):9459–72.CrossRef
14.
go back to reference Gutierrez-Quintero JG, Duran Riveros JY, Martinez Valbuena CA, Pedraza Alonso S, Munevar JC, Viafara-Garcia SM. Critical-sized mandibular defect reconstruction using human dental pulp stem cells in a xenograft model-clinical, radiological, and histological evaluation. Oral Maxillofac Surg. 2020;24(4):485–93.CrossRef Gutierrez-Quintero JG, Duran Riveros JY, Martinez Valbuena CA, Pedraza Alonso S, Munevar JC, Viafara-Garcia SM. Critical-sized mandibular defect reconstruction using human dental pulp stem cells in a xenograft model-clinical, radiological, and histological evaluation. Oral Maxillofac Surg. 2020;24(4):485–93.CrossRef
15.
go back to reference Lorusso F, Inchingolo F, Dipalma G, Postiglione F, Fulle S, Scarano A. Synthetic scaffold/dental pulp stem cell (DPSC) tissue engineering constructs for bone defect treatment: an animal studies literature review. Int J Mol Sci. 2020;21(24):9765.CrossRef Lorusso F, Inchingolo F, Dipalma G, Postiglione F, Fulle S, Scarano A. Synthetic scaffold/dental pulp stem cell (DPSC) tissue engineering constructs for bone defect treatment: an animal studies literature review. Int J Mol Sci. 2020;21(24):9765.CrossRef
16.
go back to reference d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.CrossRef d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83.CrossRef
17.
go back to reference Aimetti M, Ferrarotti F, Gamba MN, Giraudi M, Romano F. Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: a 1-year follow-up case series. Int J Periodontics Restorative Dent. 2018;38(1):51–8.CrossRef Aimetti M, Ferrarotti F, Gamba MN, Giraudi M, Romano F. Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: a 1-year follow-up case series. Int J Periodontics Restorative Dent. 2018;38(1):51–8.CrossRef
18.
go back to reference Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep. 2019;9(1):5430.CrossRef Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep. 2019;9(1):5430.CrossRef
19.
go back to reference Shimizu S, Tsuchiya S, Hirakawa A, Kato K, Ando M, Mizuno M, et al. Design of a randomized controlled clinical study of tissue-engineered osteogenic materials using bone marrow-derived mesenchymal cells for Maxillomandibular bone defects in Japan: the TEOM study protocol. BMC Oral Health. 2019;19(1):69.CrossRef Shimizu S, Tsuchiya S, Hirakawa A, Kato K, Ando M, Mizuno M, et al. Design of a randomized controlled clinical study of tissue-engineered osteogenic materials using bone marrow-derived mesenchymal cells for Maxillomandibular bone defects in Japan: the TEOM study protocol. BMC Oral Health. 2019;19(1):69.CrossRef
20.
go back to reference Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials. 2020;10(6):1216.CrossRef Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials. 2020;10(6):1216.CrossRef
21.
go back to reference Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016;20(8):2259–65.CrossRef Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M, et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016;20(8):2259–65.CrossRef
22.
go back to reference Giesenhagen B, Martin N, Jung O, Barbeck M. Bone augmentation and simultaneous implant placement with allogenic bone rings and analysis of its purification success. Materials. 2019;12(8):1219.CrossRef Giesenhagen B, Martin N, Jung O, Barbeck M. Bone augmentation and simultaneous implant placement with allogenic bone rings and analysis of its purification success. Materials. 2019;12(8):1219.CrossRef
23.
go back to reference Motamedian SR, Tabatabaei FS, Akhlaghi F, Torshabi M, Gholamin P, Khojasteh A. Response of dental pulp stem cells to synthetic, allograft, and xenograft bone scaffolds. Int J Periodontics Restorative Dent. 2017;37(1):49–59.CrossRef Motamedian SR, Tabatabaei FS, Akhlaghi F, Torshabi M, Gholamin P, Khojasteh A. Response of dental pulp stem cells to synthetic, allograft, and xenograft bone scaffolds. Int J Periodontics Restorative Dent. 2017;37(1):49–59.CrossRef
24.
go back to reference Ersanli S, Arisan V, Bedeloglu E. Evaluation of the autogenous bone block transfer for dental implant placement: symphysal or ramus harvesting? BMC Oral Health. 2016;16:4.CrossRef Ersanli S, Arisan V, Bedeloglu E. Evaluation of the autogenous bone block transfer for dental implant placement: symphysal or ramus harvesting? BMC Oral Health. 2016;16:4.CrossRef
25.
go back to reference Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–94.CrossRef Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–94.CrossRef
26.
go back to reference Stojanovic S, AlKhoury H, Radenkovic M, Cvetkovic V, Jablonska M, Schmelzer CEH, et al. Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. J Biomed Mater Res A. 2021;109(8):1353–65.CrossRef Stojanovic S, AlKhoury H, Radenkovic M, Cvetkovic V, Jablonska M, Schmelzer CEH, et al. Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. J Biomed Mater Res A. 2021;109(8):1353–65.CrossRef
27.
go back to reference Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ. Bone graft materials and synthetic substitutes. Radiol Clin North Am. 2006;44(3):451–61.CrossRef Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ. Bone graft materials and synthetic substitutes. Radiol Clin North Am. 2006;44(3):451–61.CrossRef
28.
go back to reference Mohlhenrich SC, Heitzer M, Magnuska Z, Gremse F, Chhatwani S, Danesh G, et al. Establishing a new alveolar cleft model in rats to investigate the influence of jaw reconstructions on orthodontic tooth movement. Ann Anat. 2021;236: 151713.CrossRef Mohlhenrich SC, Heitzer M, Magnuska Z, Gremse F, Chhatwani S, Danesh G, et al. Establishing a new alveolar cleft model in rats to investigate the influence of jaw reconstructions on orthodontic tooth movement. Ann Anat. 2021;236: 151713.CrossRef
29.
go back to reference Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol. 2000;1999(19):74–86. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol. 2000;1999(19):74–86.
30.
go back to reference Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10(5):1806–16.CrossRef Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10(5):1806–16.CrossRef
31.
go back to reference PericKacarevic Z, Kavehei F, Houshmand A, Franke J, Smeets R, Rimashevskiy D, et al. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int J Artif Organs. 2018;41(11):789–800.CrossRef PericKacarevic Z, Kavehei F, Houshmand A, Franke J, Smeets R, Rimashevskiy D, et al. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int J Artif Organs. 2018;41(11):789–800.CrossRef
32.
go back to reference Giesenhagen B, Martin N, Donkiewicz P, PericKacarevic Z, Smeets R, Jung O, et al. Vertical bone augmentation in a single-tooth gap with an allogenic bone ring: clinical considerations. J Esthet Restor Dent. 2018;30(6):480–3.CrossRef Giesenhagen B, Martin N, Donkiewicz P, PericKacarevic Z, Smeets R, Jung O, et al. Vertical bone augmentation in a single-tooth gap with an allogenic bone ring: clinical considerations. J Esthet Restor Dent. 2018;30(6):480–3.CrossRef
33.
go back to reference Ritz U, Gotz H, Baranowski A, Heid F, Rommens PM, Hofmann A. Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures. J Biomed Mater Res B Appl Biomater. 2017;105(7):1950–62.CrossRef Ritz U, Gotz H, Baranowski A, Heid F, Rommens PM, Hofmann A. Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures. J Biomed Mater Res B Appl Biomater. 2017;105(7):1950–62.CrossRef
34.
go back to reference Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.CrossRef Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.CrossRef
35.
go back to reference Meyer U, Wiesmann HP. Tissue engineering: a challenge of today’s medicine. Head Face Med. 2005;1:2.CrossRef Meyer U, Wiesmann HP. Tissue engineering: a challenge of today’s medicine. Head Face Med. 2005;1:2.CrossRef
36.
go back to reference Zou W, Li X, Li N, Guo T, Cai Y, Yang X, et al. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. Regen Biomater. 2021;8(1):40.CrossRef Zou W, Li X, Li N, Guo T, Cai Y, Yang X, et al. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. Regen Biomater. 2021;8(1):40.CrossRef
37.
go back to reference Kniha K, Buhl EM, Hermanns-Sachweh B, Al-Sibai F, Bock A, Peters F, et al. Implant removal using thermal necrosis-an in vitro pilot study. Clin Oral Investig. 2021;25(1):265–73.CrossRef Kniha K, Buhl EM, Hermanns-Sachweh B, Al-Sibai F, Bock A, Peters F, et al. Implant removal using thermal necrosis-an in vitro pilot study. Clin Oral Investig. 2021;25(1):265–73.CrossRef
38.
go back to reference Bernhardt A, Lode A, Peters F, Gelinsky M. Comparative evaluation of different calcium phosphate-based bone graft granules—an in vitro study with osteoblast-like cells. Clin Oral Implants Res. 2013;24(4):441–9.CrossRef Bernhardt A, Lode A, Peters F, Gelinsky M. Comparative evaluation of different calcium phosphate-based bone graft granules—an in vitro study with osteoblast-like cells. Clin Oral Implants Res. 2013;24(4):441–9.CrossRef
39.
go back to reference Liu N, Zhou M, Zhang Q, Zhang T, Tian T, Ma Q, et al. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif. 2018;51(2): e12435.CrossRef Liu N, Zhou M, Zhang Q, Zhang T, Tian T, Ma Q, et al. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif. 2018;51(2): e12435.CrossRef
40.
go back to reference Bernhardt A, Lode A, Peters F, Gelinsky M. Novel ceramic bone replacement material Osbone(R) in a comparative in vitro study with osteoblasts. Clin Oral Implants Res. 2011;22(6):651–7.CrossRef Bernhardt A, Lode A, Peters F, Gelinsky M. Novel ceramic bone replacement material Osbone(R) in a comparative in vitro study with osteoblasts. Clin Oral Implants Res. 2011;22(6):651–7.CrossRef
41.
go back to reference Handschel J, Berr K, Depprich R, Naujoks C, Kubler NR, Meyer U, et al. Compatibility of embryonic stem cells with biomaterials. J Biomater Appl. 2009;23(6):549–60.CrossRef Handschel J, Berr K, Depprich R, Naujoks C, Kubler NR, Meyer U, et al. Compatibility of embryonic stem cells with biomaterials. J Biomater Appl. 2009;23(6):549–60.CrossRef
42.
go back to reference Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7(3):302–10. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7(3):302–10.
43.
go back to reference Yang F, Li K, Fu S, Cuiffo M, Simon M, Rafailovich M, et al. In vitro toxicity of bone graft materials to human mineralizing cells. Materials. 2022;15(5):1955.CrossRef Yang F, Li K, Fu S, Cuiffo M, Simon M, Rafailovich M, et al. In vitro toxicity of bone graft materials to human mineralizing cells. Materials. 2022;15(5):1955.CrossRef
44.
go back to reference Kubler A, Neugebauer J, Oh JH, Scheer M, Zoller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent. 2004;13(2):171–9.CrossRef Kubler A, Neugebauer J, Oh JH, Scheer M, Zoller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent. 2004;13(2):171–9.CrossRef
45.
go back to reference Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.CrossRef Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.CrossRef
46.
go back to reference Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers and Polymers. 2017;18(8):1468–77.CrossRef Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers and Polymers. 2017;18(8):1468–77.CrossRef
47.
go back to reference Iaquinta MR, Torreggiani E, Mazziotta C, Ruffini A, Sprio S, Tampieri A, et al. In vitro osteoinductivity assay of hydroxylapatite scaffolds, obtained with biomorphic transformation processes, assessed using human adipose stem cell cultures. Int J Mol Sci. 2021;22(13):7092.CrossRef Iaquinta MR, Torreggiani E, Mazziotta C, Ruffini A, Sprio S, Tampieri A, et al. In vitro osteoinductivity assay of hydroxylapatite scaffolds, obtained with biomorphic transformation processes, assessed using human adipose stem cell cultures. Int J Mol Sci. 2021;22(13):7092.CrossRef
Metadata
Title
In vitro comparison of the osteogenic capability of human pulp stem cells on alloplastic, allogeneic, and xenogeneic bone scaffolds
Authors
Marius Heitzer
Ali Modabber
Xing Zhang
Philipp Winnand
Qun Zhao
Felix Marius Bläsius
Eva Miriam Buhl
Michael Wolf
Sabine Neuss
Frank Hölzle
Frank Hildebrand
Johannes Greven
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02726-4

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue