Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

CERCAM is a prognostic biomarker associated with immune infiltration of macrophage M2 polarization in head and neck squamous carcinoma

Authors: Ying Yang, Cong Yan, Xiao-Jian Chen

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Purpose

This study aimed to investigate the relevance of cerebral endothelial cell adhesion molecule (CERCAM) expression to head and neck squamous cell carcinoma (HNSCC) prognosis and immune infiltration by macrophage M2 polarization.

Methods

Timer, UALCAN and HPA databases was used to analyze the differences in mRNA and protein levels of CERCAM expression in HNSCC. The Timer database was also applied to analyze the correlation between CERCAM in HNSCC and immune infiltration. TCGA-HNSCC database was applied to analyze the correlation between CERCAM expression levels and clinicopathological features, and its diagnostic and prognostic value in HNSCC was also assessed. The cBioPortal and MethSurv databases were then applied to analyze the genetic variation and methylation status of CERCAM. In vitro cellular assays were performed to provide evidence that CERCAM promotes malignant biological behavior of tumors and promotes macrophage M2 polarization in tumors. Finally, underlying pathophysiological mechanisms of CERCAM involvement in the development of HNSCC were predicted using a bioinformatics approach.

Results

CERCAM is significantly overexpressed in HNSCC and correlates with poor prognostic levels and has good performance in predicting survival status in HNSCC patients. Cox regression analysis indicates that CERCAM expression levels are independent risk factors for predicting OS, DSS, and PFI. CERCAM promotes tumor malignant biological behavior and promotes macrophage M2 polarization immune infiltration in HNSCC. In addition, CERCAM promotes tumor cell adhesion in head and neck squamous carcinoma and promotes tumor progression through several oncogenic signaling pathways.

Conclusion

CERCAM may serve as a new diagnostic and prognostic biomarker in HNSCC and is a promising therapeutic target for HNSCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.CrossRefPubMed Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.CrossRefPubMed
2.
go back to reference de Bree R, Leemans CR. Recent advances in surgery for head and neck cancer. Curr Opin Oncol. 2010;22(3):186–93.PubMed de Bree R, Leemans CR. Recent advances in surgery for head and neck cancer. Curr Opin Oncol. 2010;22(3):186–93.PubMed
3.
go back to reference Alterio D, Marvaso G, Ferrari A, Volpe S, Orecchia R, Jereczek-Fossa BA. Modern radiotherapy for head and neck cancer. Semin Oncol. 2019;46(3):233–45.PubMed Alterio D, Marvaso G, Ferrari A, Volpe S, Orecchia R, Jereczek-Fossa BA. Modern radiotherapy for head and neck cancer. Semin Oncol. 2019;46(3):233–45.PubMed
4.
go back to reference Rajendra A, Noronha V, Joshi A, Patil VM, Menon N, Prabhash K. Palliative chemotherapy in head and neck cancer: balancing between beneficial and adverse effects. Expert Rev Anticancer Ther. 2020;20(1):17–29.PubMed Rajendra A, Noronha V, Joshi A, Patil VM, Menon N, Prabhash K. Palliative chemotherapy in head and neck cancer: balancing between beneficial and adverse effects. Expert Rev Anticancer Ther. 2020;20(1):17–29.PubMed
5.
go back to reference Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: recent advances and future directions. Oral Oncol. 2019;99:104460.PubMedPubMedCentral Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: recent advances and future directions. Oral Oncol. 2019;99:104460.PubMedPubMedCentral
6.
go back to reference Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: challenges and opportunities. Int J Cancer. 2021;148(7):1548–61.PubMed Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: challenges and opportunities. Int J Cancer. 2021;148(7):1548–61.PubMed
7.
go back to reference Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev. 2020;84:101977.PubMed Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev. 2020;84:101977.PubMed
8.
go back to reference Arantes L, De Carvalho AC, Melendez ME, Lopes CA. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18(1):85–112.PubMed Arantes L, De Carvalho AC, Melendez ME, Lopes CA. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18(1):85–112.PubMed
10.
go back to reference Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565–73.PubMed Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565–73.PubMed
11.
go back to reference Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, et al. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods. 2019;25(11):631–40.PubMedPubMedCentral Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, et al. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods. 2019;25(11):631–40.PubMedPubMedCentral
12.
go back to reference Elangbam CS, Qualls CW Jr, Dahlgren RR. Cell adhesion molecules–update. Vet Pathol. 1997;34(1):61–73.PubMed Elangbam CS, Qualls CW Jr, Dahlgren RR. Cell adhesion molecules–update. Vet Pathol. 1997;34(1):61–73.PubMed
13.
go back to reference Opiłka MN, Lorenc Z, Starzewska M, Lorenc J, Rajs A. Cell adhesion molecules in terms of carcinogenesis. Pol Przegl Chir. 2014;86(3):151–7.PubMed Opiłka MN, Lorenc Z, Starzewska M, Lorenc J, Rajs A. Cell adhesion molecules in terms of carcinogenesis. Pol Przegl Chir. 2014;86(3):151–7.PubMed
14.
go back to reference Laffón A, González-Amaro R. Cell adhesion molecules: an overview. Br J Rheumatol. 1995;34(12):1101–2.PubMed Laffón A, González-Amaro R. Cell adhesion molecules: an overview. Br J Rheumatol. 1995;34(12):1101–2.PubMed
15.
go back to reference Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–71.PubMed Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–71.PubMed
16.
go back to reference Luís C, Soares R, Fernandes R, Botelho M. Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer. Curr Mol Med. 2023;23(2):147–60.PubMed Luís C, Soares R, Fernandes R, Botelho M. Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer. Curr Mol Med. 2023;23(2):147–60.PubMed
17.
go back to reference Mason MD, Davies G, Jiang WG. Cell adhesion molecules and adhesion abnormalities in prostate cancer. Crit Rev Oncol Hematol. 2002;41(1):11–28.PubMed Mason MD, Davies G, Jiang WG. Cell adhesion molecules and adhesion abnormalities in prostate cancer. Crit Rev Oncol Hematol. 2002;41(1):11–28.PubMed
18.
go back to reference Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD. Zika virus modulates blood-brain barrier of brain microvascular endothelial cells. Trop Biomed. 2019;36(4):888–97.PubMed Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD. Zika virus modulates blood-brain barrier of brain microvascular endothelial cells. Trop Biomed. 2019;36(4):888–97.PubMed
19.
go back to reference Xu T, Xu W, Zheng Y, Li X, Cai H, Xu Z, et al. Comprehensive FGFR3 alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer. Front Immunol. 2022;13:931906.PubMedPubMedCentral Xu T, Xu W, Zheng Y, Li X, Cai H, Xu Z, et al. Comprehensive FGFR3 alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer. Front Immunol. 2022;13:931906.PubMedPubMedCentral
20.
go back to reference Nie S, Huili Y, He Y, Hu J, Kang S, Cao F. Identification of bladder cancer subtypes based on necroptosis-related genes, construction of a prognostic model. Frontiers in surgery. 2022;9:860857.PubMedPubMedCentral Nie S, Huili Y, He Y, Hu J, Kang S, Cao F. Identification of bladder cancer subtypes based on necroptosis-related genes, construction of a prognostic model. Frontiers in surgery. 2022;9:860857.PubMedPubMedCentral
21.
go back to reference Zuo Y, Xu X, Chen M, Qi L. The oncogenic role of the cerebral endothelial cell adhesion molecule (CERCAM) in bladder cancer cells in vitro and in vivo. Cancer Med. 2021;10(13):4437–50.PubMedPubMedCentral Zuo Y, Xu X, Chen M, Qi L. The oncogenic role of the cerebral endothelial cell adhesion molecule (CERCAM) in bladder cancer cells in vitro and in vivo. Cancer Med. 2021;10(13):4437–50.PubMedPubMedCentral
22.
go back to reference Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor Microenvironment as a “Game Changer” in cancer radiotherapy. Int J Mol Sci. 2019;20(13):3212.PubMedPubMedCentral Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor Microenvironment as a “Game Changer” in cancer radiotherapy. Int J Mol Sci. 2019;20(13):3212.PubMedPubMedCentral
23.
go back to reference Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66.PubMedPubMedCentral Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66.PubMedPubMedCentral
24.
go back to reference Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 2021;20(1):154.PubMedPubMedCentral Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 2021;20(1):154.PubMedPubMedCentral
25.
go back to reference Achyut BR, Shankar A, Iskander AS, Ara R, Angara K, Zeng P, et al. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett. 2015;369(2):416–26.PubMedPubMedCentral Achyut BR, Shankar A, Iskander AS, Ara R, Angara K, Zeng P, et al. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett. 2015;369(2):416–26.PubMedPubMedCentral
26.
go back to reference Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020;468:72–81.PubMed Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020;468:72–81.PubMed
27.
go back to reference Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6(1):153.PubMedPubMedCentral Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6(1):153.PubMedPubMedCentral
28.
go back to reference Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.PubMedPubMedCentral Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.PubMedPubMedCentral
29.
go back to reference Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci. 2021;1499(1):18–41.PubMed Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci. 2021;1499(1):18–41.PubMed
30.
go back to reference Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020;15:123–47.PubMed Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020;15:123–47.PubMed
31.
32.
go back to reference Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 2017;10(1):36.PubMedPubMedCentral Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 2017;10(1):36.PubMedPubMedCentral
33.
go back to reference Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell cycle (Georgetown, Tex). 2018;17(4):428–38.PubMedPubMedCentral Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell cycle (Georgetown, Tex). 2018;17(4):428–38.PubMedPubMedCentral
34.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic acids Res. 2020;48(W1):W509-w14.PubMedPubMedCentral Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic acids Res. 2020;48(W1):W509-w14.PubMedPubMedCentral
35.
go back to reference Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (New York, NY). 2017;19(8):649–58. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (New York, NY). 2017;19(8):649–58.
36.
go back to reference Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland). 2015;19(1a):A68-77. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland). 2015;19(1a):A68-77.
37.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.PubMedPubMedCentral Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.PubMedPubMedCentral
38.
go back to reference Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88.PubMed Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88.PubMed
39.
go back to reference Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.PubMed Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425–31.PubMed
40.
go back to reference Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.PubMed Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.PubMed
42.
43.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–92.PubMed Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–92.PubMed
44.
go back to reference Miricescu D, Totan A, Stanescu S II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020;22(1):173.PubMedPubMedCentral Miricescu D, Totan A, Stanescu S II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020;22(1):173.PubMedPubMedCentral
45.
go back to reference Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.PubMed Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.PubMed
46.
go back to reference Drosten M, Barbacid M. Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell. 2020;37(4):543–50.PubMed Drosten M, Barbacid M. Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell. 2020;37(4):543–50.PubMed
47.
48.
go back to reference Szturz P, Vermorken JB. Overcoming frailty in recurrent and metastatic head and neck cancer. Oral Oncol. 2020;109:104636.PubMed Szturz P, Vermorken JB. Overcoming frailty in recurrent and metastatic head and neck cancer. Oral Oncol. 2020;109:104636.PubMed
49.
go back to reference Ota I, Kitahara T. Cancer of unknown primary in the head and neck: Diagnosis and treatment. Auris Nasus Larynx. 2021;48(1):23–31.PubMed Ota I, Kitahara T. Cancer of unknown primary in the head and neck: Diagnosis and treatment. Auris Nasus Larynx. 2021;48(1):23–31.PubMed
50.
go back to reference Roldán FL, Izquierdo L, Ingelmo-Torres M, Lozano JJ, Carrasco R, Cuñado A, et al. Prognostic gene expression-based signature in clear-cell renal cell carcinoma. Cancers (Basel). 2022;14(15):3754.PubMed Roldán FL, Izquierdo L, Ingelmo-Torres M, Lozano JJ, Carrasco R, Cuñado A, et al. Prognostic gene expression-based signature in clear-cell renal cell carcinoma. Cancers (Basel). 2022;14(15):3754.PubMed
51.
go back to reference Gerovska D, Garcia-Gallastegi P, Crende O, Márquez J, Larrinaga G, Unzurrunzaga M, et al. GeromiRs are downregulated in the tumor microenvironment during colon cancer colonization of the liver in a murine metastasis model. Int J Mol Sci. 2021;22(9):4819.PubMedPubMedCentral Gerovska D, Garcia-Gallastegi P, Crende O, Márquez J, Larrinaga G, Unzurrunzaga M, et al. GeromiRs are downregulated in the tumor microenvironment during colon cancer colonization of the liver in a murine metastasis model. Int J Mol Sci. 2021;22(9):4819.PubMedPubMedCentral
52.
go back to reference Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995.PubMedPubMedCentral Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995.PubMedPubMedCentral
53.
go back to reference Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11:1731.PubMedPubMedCentral Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11:1731.PubMedPubMedCentral
Metadata
Title
CERCAM is a prognostic biomarker associated with immune infiltration of macrophage M2 polarization in head and neck squamous carcinoma
Authors
Ying Yang
Cong Yan
Xiao-Jian Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03421-0

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue