Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

In vitro anti-proliferative activity of Argemone gracilenta and identification of some active components

Authors: Mario Alberto Leyva-Peralta, Ramón Enrique Robles-Zepeda, Adriana Garibay-Escobar, Eduardo Ruiz-Bustos, Laura Patricia Alvarez-Berber, Juan Carlos Gálvez-Ruiz

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Cancer is one of the leading causes of death worldwide. Natural products have been regarded as important sources of potential chemotherapeutic agents. In this study, we evaluated the anti-proliferative activity of Argemone gracilenta’s methanol extract and its fractions. We identified those compounds of the most active fractions that displayed anti-proliferative activity.

Methods

The anti-proliferative activity on different cancerous cell lines (M12.C3F6, RAW 264.7, HeLa) was evaluated in vitro using the MTT colorimetric method. Identification of the active compounds present in the fractions with the highest activity was achieved by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) analyses.

Results

Both argemonine and berberine alkaloids, isolated from the ethyl acetate fraction, displayed high anti-proliferative activity with IC50 values of 2.8, 2.5, 12.1, and 2.7, 2.4, 79.5 μg/mL on M12.C3F6, RAW 264.7, and HeLa cancerous cell lines, respectively. No activity was shown on the normal L-929 cell line. From the hexane fraction, a mixture of fatty acids and fatty acid esters of 16 or more carbon atoms with anti-proliferative activity was identified, showing a range of IC50 values of 16.8-24.9, 34.1-35.4, and 67.6-91.8 μg/mL on M12.C3F6, RAW 264.7, and HeLa cancerous cell lines, respectively. On the normal L-929 cell line, this mixture showed a range of IC50 values of 85.1 to 100 μg/mL.

Conclusion

This is the first study that relates argemonine, berberine, and a mixture of fatty acids and fatty acid esters with the anti-proliferative activity displayed by Argemone gracilenta.
Literature
1.
go back to reference Fadeyi SA, Fadeyi OO, Adejumo AA, Okoro C, Myles EL. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med. 2013;13(79):1–9. Fadeyi SA, Fadeyi OO, Adejumo AA, Okoro C, Myles EL. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med. 2013;13(79):1–9.
2.
go back to reference Umthong S, Phuwapraisirisan P, Puthung S, Chanchao C. In vitro antiproliferative activity of partially purified Trigona leaviceps propolis from Thailand on human cancer cell lines. BMC Complement Altern Med. 2011;11(37):1–8. Umthong S, Phuwapraisirisan P, Puthung S, Chanchao C. In vitro antiproliferative activity of partially purified Trigona leaviceps propolis from Thailand on human cancer cell lines. BMC Complement Altern Med. 2011;11(37):1–8.
3.
go back to reference Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med. 2011;6(27):1–15. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med. 2011;6(27):1–15.
4.
go back to reference Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A. Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol. 2011;133:945–72.CrossRefPubMed Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A. Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol. 2011;133:945–72.CrossRefPubMed
5.
go back to reference Ma X, Wang Z. Anticancer drug discovery in the future: an evolutionary perspective. Drug Discov Today. 2009;14(23/24):1136–42.CrossRefPubMed Ma X, Wang Z. Anticancer drug discovery in the future: an evolutionary perspective. Drug Discov Today. 2009;14(23/24):1136–42.CrossRefPubMed
6.
go back to reference Gumenyuk VG, Bashmakova NV, Kutovyy SY, Yashchuk VM, Zaika LA. Binding parameter of alkaloids berberine and sanguinarine with DNA. Ukr J Phys. 2011;56(6):524–33. Gumenyuk VG, Bashmakova NV, Kutovyy SY, Yashchuk VM, Zaika LA. Binding parameter of alkaloids berberine and sanguinarine with DNA. Ukr J Phys. 2011;56(6):524–33.
7.
go back to reference Kim J, Park EJ. Cytotoxic anticancer candidates from natural resources. Curr Med Chem-Anti-cancer. 2002;2(4):485–537.CrossRef Kim J, Park EJ. Cytotoxic anticancer candidates from natural resources. Curr Med Chem-Anti-cancer. 2002;2(4):485–537.CrossRef
8.
go back to reference Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(2):143–8.CrossRefPubMed Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(2):143–8.CrossRefPubMed
9.
go back to reference McChesney JD, Venkataraman SK, Henri JT. Plant natural products: back to the future or into extinction? Phytochemestry. 2007;68:2015–22.CrossRef McChesney JD, Venkataraman SK, Henri JT. Plant natural products: back to the future or into extinction? Phytochemestry. 2007;68:2015–22.CrossRef
10.
go back to reference Lin YC, Wang CC, Chen IS, Jheng JL, Li JH, Tung CW. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. Sci World J. 2013;2013:1–4. Lin YC, Wang CC, Chen IS, Jheng JL, Li JH, Tung CW. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. Sci World J. 2013;2013:1–4.
11.
12.
go back to reference Sanchez-Mendoza ME, Castillo-Henkel C, Navarrete A. Relaxant action mechanism of berberine identified as the active priciple of Argemone ochroleuca Sweet in guinea-pig tracheal smooth muscle. Pharm Pharmacol. 2008;60:229–36.CrossRef Sanchez-Mendoza ME, Castillo-Henkel C, Navarrete A. Relaxant action mechanism of berberine identified as the active priciple of Argemone ochroleuca Sweet in guinea-pig tracheal smooth muscle. Pharm Pharmacol. 2008;60:229–36.CrossRef
13.
go back to reference Kiranmayi G, Ramakrishnani G, Kothai R, Jaykar B. In vitro anti-cancer of methanolic extract of leaves of Argemone Mexicana Linn. Int J PharmTech Res. 2011;13(3):1329–33. Kiranmayi G, Ramakrishnani G, Kothai R, Jaykar B. In vitro anti-cancer of methanolic extract of leaves of Argemone Mexicana Linn. Int J PharmTech Res. 2011;13(3):1329–33.
14.
go back to reference Bhattacharjee I, Chatterjee SK, Chatterjee S, Chandra G. Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Mem Inst Oswaldo Cruz. 2006;110(6):645–8. Bhattacharjee I, Chatterjee SK, Chatterjee S, Chandra G. Antibacterial potentiality of Argemone mexicana solvent extracts against some pathogenic bacteria. Mem Inst Oswaldo Cruz. 2006;110(6):645–8.
15.
go back to reference Apu AS, AL-Baizyd AH, Ara F, Bhuyan SH, Matin M, Hossain F. Phytochemical analysis and bioactivities of Argemone mexicana Linn. Leaves PharmacolOnLine. 2012;3:16–23. Apu AS, AL-Baizyd AH, Ara F, Bhuyan SH, Matin M, Hossain F. Phytochemical analysis and bioactivities of Argemone mexicana Linn. Leaves PharmacolOnLine. 2012;3:16–23.
16.
go back to reference Yuh-Chwen C, Fang-Rong C, Ashraf TK, Pei-Wen H, Yang-Chang W. Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C. 2003;57:521–6. Yuh-Chwen C, Fang-Rong C, Ashraf TK, Pei-Wen H, Yang-Chang W. Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C. 2003;57:521–6.
17.
go back to reference Stermitz FR, McMurtrey KD. Alkaloids of the Papaveraceae X New alkaloids from Argemone gracilenta Greene. J Org Chem. 1968;34(3):555–9.CrossRef Stermitz FR, McMurtrey KD. Alkaloids of the Papaveraceae X New alkaloids from Argemone gracilenta Greene. J Org Chem. 1968;34(3):555–9.CrossRef
18.
go back to reference Ruiz-Bustos E, Velazquez C, Garibay-Escobar A, García Z, Plascencia-Jatomea M, Cortez-Rocha MO, et al. Antibacterial and antifungal activities of some mexican medicinal plants. J Med Food. 2009;12:1398–402.CrossRefPubMed Ruiz-Bustos E, Velazquez C, Garibay-Escobar A, García Z, Plascencia-Jatomea M, Cortez-Rocha MO, et al. Antibacterial and antifungal activities of some mexican medicinal plants. J Med Food. 2009;12:1398–402.CrossRefPubMed
19.
go back to reference Shakirov R, Telezhenetskaya MV, Bessonova IA, Aripova SF, Israilov IA, Soltankhodzhaev MN, et al. Alkaloids. plants, structure, properties. Chem Nat Compd. 1996;32:216–334.CrossRef Shakirov R, Telezhenetskaya MV, Bessonova IA, Aripova SF, Israilov IA, Soltankhodzhaev MN, et al. Alkaloids. plants, structure, properties. Chem Nat Compd. 1996;32:216–334.CrossRef
20.
go back to reference Velazquez C, Navarro M, Acosta A, Angulo A, Dominguez Z, Robles R, et al. Antibacterial and free- radical scavenging activities on Sonoran propolis. J Appl Microbiol. 2007;103:1747–56.CrossRefPubMed Velazquez C, Navarro M, Acosta A, Angulo A, Dominguez Z, Robles R, et al. Antibacterial and free- radical scavenging activities on Sonoran propolis. J Appl Microbiol. 2007;103:1747–56.CrossRefPubMed
21.
go back to reference Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann K, editor. Methods in Plant Biochemistry. In: Assays for Bioactivity. London: 6: Academic Press; 1990. p. 71–133. Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann K, editor. Methods in Plant Biochemistry. In: Assays for Bioactivity. London: 6: Academic Press; 1990. p. 71–133.
22.
go back to reference Shabana MM, Salama MM, Shahira M, Ismail LR. In Vitro and In Vivo anticancer activity of the fruit peels of Solanum melongena L. against hepatocellular carcinoma. J Carcinog Mutagen. 2013;4(3):1–6. Shabana MM, Salama MM, Shahira M, Ismail LR. In Vitro and In Vivo anticancer activity of the fruit peels of Solanum melongena L. against hepatocellular carcinoma. J Carcinog Mutagen. 2013;4(3):1–6.
23.
go back to reference Boik J. Natural Compounds in Cancer Therapy. Minnesota, USA: Oregon Medical Press, Princeton; 2001. p. 25. Boik J. Natural Compounds in Cancer Therapy. Minnesota, USA: Oregon Medical Press, Princeton; 2001. p. 25.
24.
go back to reference Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.CrossRefPubMedPubMedCentral Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.CrossRefPubMedPubMedCentral
25.
go back to reference Youte J, Barbier D, Gnecco D, Marazano C. An enantioselective acess to 1-alkalyl-1,2,3,4-tetrahydroisoquinolines. Application to a new synthesis of (-)-argemonine. J Org Chem. 2004;69(8):2737–40.CrossRefPubMed Youte J, Barbier D, Gnecco D, Marazano C. An enantioselective acess to 1-alkalyl-1,2,3,4-tetrahydroisoquinolines. Application to a new synthesis of (-)-argemonine. J Org Chem. 2004;69(8):2737–40.CrossRefPubMed
26.
go back to reference Blasko G, Cordell G, Bhamaraparavati S, Beecher C. Carbon-13 NMR assignments of berberine and sanguinarina. Heterocycles. 1988;27(4):911–6.CrossRef Blasko G, Cordell G, Bhamaraparavati S, Beecher C. Carbon-13 NMR assignments of berberine and sanguinarina. Heterocycles. 1988;27(4):911–6.CrossRef
28.
go back to reference Slaninová I, Pencíková K, Urbanová K, Slanina J, Táburská E. Antitumor activities of sanguinarine and related alkaloids. Phytochemistry Rev. 2013;13:1–9. Slaninová I, Pencíková K, Urbanová K, Slanina J, Táburská E. Antitumor activities of sanguinarine and related alkaloids. Phytochemistry Rev. 2013;13:1–9.
29.
go back to reference Jin-Jian L, Jiao-Lin B, Xiu-Ping C, Huang Mand M, Wang Y. Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternative Med. 2012;2012:1–12. Jin-Jian L, Jiao-Lin B, Xiu-Ping C, Huang Mand M, Wang Y. Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternative Med. 2012;2012:1–12.
30.
go back to reference Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther. 2006;5(2):296–308.CrossRefPubMed Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther. 2006;5(2):296–308.CrossRefPubMed
31.
go back to reference Eom KS, Kim HJ, So S, Park R, Kim TY. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol Pharm Bull. 2010;3(10):1644–9.CrossRef Eom KS, Kim HJ, So S, Park R, Kim TY. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol Pharm Bull. 2010;3(10):1644–9.CrossRef
32.
go back to reference Sun XY, Wang K, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-cancer Drugs. 2009;20(9):757–69.CrossRefPubMed Sun XY, Wang K, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-cancer Drugs. 2009;20(9):757–69.CrossRefPubMed
33.
go back to reference Ho Y, Yang J, Li T. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitors of FAK, IKK, NF-kB, u-PA and MMP-2 and -9. Cancer Lett. 2009;279(2):155–62.CrossRefPubMed Ho Y, Yang J, Li T. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitors of FAK, IKK, NF-kB, u-PA and MMP-2 and -9. Cancer Lett. 2009;279(2):155–62.CrossRefPubMed
34.
go back to reference Hamsa T, Kuttan G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem Toxicol. 2012;35(1):57–70.CrossRefPubMed Hamsa T, Kuttan G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem Toxicol. 2012;35(1):57–70.CrossRefPubMed
35.
go back to reference Girao LA, Rock AC, Cantrill RC, Davidson BC. The effect of C18 fatty acids on cancer cells in culture. Anticancer Res. 1986;6(2):241–4.PubMed Girao LA, Rock AC, Cantrill RC, Davidson BC. The effect of C18 fatty acids on cancer cells in culture. Anticancer Res. 1986;6(2):241–4.PubMed
36.
go back to reference Huges-Fulford M, Chen Y, Tjandrawinata R. Fatty acid regulates gene expression and growth of human prostate cancer PC-3. Carcinog. 2001;22(5):701–7.CrossRef Huges-Fulford M, Chen Y, Tjandrawinata R. Fatty acid regulates gene expression and growth of human prostate cancer PC-3. Carcinog. 2001;22(5):701–7.CrossRef
Metadata
Title
In vitro anti-proliferative activity of Argemone gracilenta and identification of some active components
Authors
Mario Alberto Leyva-Peralta
Ramón Enrique Robles-Zepeda
Adriana Garibay-Escobar
Eduardo Ruiz-Bustos
Laura Patricia Alvarez-Berber
Juan Carlos Gálvez-Ruiz
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0532-8

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue