Skip to main content
Top
Published in: Journal of Inflammation 1/2011

Open Access 01-12-2011 | Research

In vitro anti-inflammatory and anti-coagulant effects of antibiotics towards Platelet Activating Factor and thrombin

Authors: Alexandros B Tsoupras, Maria Chini, Nickolaos Tsogas, Athina Lioni, George Tsekes, Constantinos A Demopoulos, Marios C Lazanas

Published in: Journal of Inflammation | Issue 1/2011

Login to get access

Abstract

Background

Sepsis is characterized as a systemic inflammatory response that results from the inability of the immune system to limit bacterial spread during an ongoing infection. In this condition the significant mediator of inflammation Platelet Activating Factor (PAF) and the coagulant factor thrombin are implicated. In animal models, treatment with PAF-antagonists or co-administration of antibiotics with recombinant-PAF-Acetylhydrolase (rPAF-AH) have exhibited promising results. In order to examine the putative anti-inflammatory and/or antithrombotic interactions between antibiotic treatment used in sepsis with PAF and/or thrombin, we studied the in vitro effects of these compounds towards PAF or/and thrombin related activities and towards PAF basic metabolic enzymes.

Methods

We assessed the inhibitory effect of these drugs against PAF or thrombin induced aggregation on washed rabbit platelets (WRPs) or rabbit Platelet Reach Plasma (rPRP) by evaluating their IC50 values. We also studied their effect on Cholinephosphotransferase of PAF (PAF-CPT)/Lyso-PAF-Acetyltransferase (Lyso-PAF-AT) of rabbit leukocytes (RLs), as well as on rabbit plasma-PAF-AH, the key enzymes of both de novo/remodelling PAF biosynthesis and PAF degradation, respectively.

Results

Several antibiotics inhibited PAF-induced platelet aggregation of both WRPs and rPRP in a concentration-depended manner, with clarithromycin, azithromycin and amikacin exhibiting the higher inhibitory effect, while when combined they synergistically inhibited PAF. Higher concentrations of all antibiotics tested were needed in order to inhibit PAF induced aggregation of rPRP, but also to inhibit thrombin induced aggregation of WRPs. Concentrations of these drugs similar to their IC50 values against PAF activity in WRPs, inhibited also in vitro PAF-CPT and Lyso-PAF-AT activities of rabbit leukocytes, while only clarithromycin and azithromycin increased rabbit plasma-PAF-AH activity.

Conclusions

These newly found properties of antibiotics used in sepsis suggest that apart from their general actions, these drugs may present additional beneficial anti-inflammatory and anti-coagulant effects against the onset and establishment of sepsis by inhibiting the PAF/PAF-receptor and/or the thrombin/protease-activated-receptor-1 systems, and/or by reducing PAF-levels through both PAF-biosynthesis inhibition and PAF-catabolism induction. These promising in vitro results need to be further studied and confirmed by in vivo tests, in order to optimize the efficacy of antibiotic treatment in sepsis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Demopoulos CA, Pinckard RN, Hanahan DJ: Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). Journal of Biological Chemistry. 1979, 254: 9355-9358.PubMed Demopoulos CA, Pinckard RN, Hanahan DJ: Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). Journal of Biological Chemistry. 1979, 254: 9355-9358.PubMed
2.
go back to reference Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM: The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med. 2002, 30 (Suppl 5): 294-301.CrossRef Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM: The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med. 2002, 30 (Suppl 5): 294-301.CrossRef
3.
go back to reference Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM: Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Cl Lab Sci. 2003, 40: 643-672. 10.1080/714037693.CrossRef Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM: Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Cl Lab Sci. 2003, 40: 643-672. 10.1080/714037693.CrossRef
4.
go back to reference Snyder F: Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta. 1995, 1254: 231-249.PubMedCrossRef Snyder F: Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta. 1995, 1254: 231-249.PubMedCrossRef
5.
go back to reference Francescangeli E, Boila A, Goracci G: Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem Res. 2000, 25: 705-713. 10.1023/A:1007523422825.PubMedCrossRef Francescangeli E, Boila A, Goracci G: Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem Res. 2000, 25: 705-713. 10.1023/A:1007523422825.PubMedCrossRef
6.
go back to reference Snyder F: CDP-choline:alkylacetylglycerol cholinephosphotransferase catalyzes the final step in the de novo synthesis of platelet-activating factor. Biochim Biophys Acta. 1997, 1348: 111-116.PubMedCrossRef Snyder F: CDP-choline:alkylacetylglycerol cholinephosphotransferase catalyzes the final step in the de novo synthesis of platelet-activating factor. Biochim Biophys Acta. 1997, 1348: 111-116.PubMedCrossRef
7.
go back to reference Stafforini DM, McIntyre TM, Carter ME, Prescott SM: Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem. 1987, 262: 4215-4222.PubMed Stafforini DM, McIntyre TM, Carter ME, Prescott SM: Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem. 1987, 262: 4215-4222.PubMed
8.
go back to reference Montrucchio G, Alloatti G, Camussi G: Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000, 80: 1669-1699.PubMed Montrucchio G, Alloatti G, Camussi G: Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000, 80: 1669-1699.PubMed
9.
go back to reference Demopoulos CA, Karantonis HC, Antonopoulou S: Platelet activating factor-a molecular link between atherosclerosis theories. European Journal Of Lipid Science And Technology. 2003, 105: 705-716. 10.1002/ejlt.200300845.CrossRef Demopoulos CA, Karantonis HC, Antonopoulou S: Platelet activating factor-a molecular link between atherosclerosis theories. European Journal Of Lipid Science And Technology. 2003, 105: 705-716. 10.1002/ejlt.200300845.CrossRef
10.
go back to reference López-Novoa JM: Potential role of platelet activating factor in acute renal failure. Kidney Int. 1999, 55: 1672-1682. 10.1046/j.1523-1755.1999.00450.x.PubMedCrossRef López-Novoa JM: Potential role of platelet activating factor in acute renal failure. Kidney Int. 1999, 55: 1672-1682. 10.1046/j.1523-1755.1999.00450.x.PubMedCrossRef
11.
go back to reference McManus LM, Pinckard RN: PAF, a putative mediator of oral inflammation. Crit Rev Oral Biol Med. 2000, 11: 240-258. 10.1177/10454411000110020701.PubMedCrossRef McManus LM, Pinckard RN: PAF, a putative mediator of oral inflammation. Crit Rev Oral Biol Med. 2000, 11: 240-258. 10.1177/10454411000110020701.PubMedCrossRef
12.
go back to reference Kasperska-Zajac A, Brzoza Z, Rogala B: Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pat Inflamm Allergy Drug Discov. 2008, 2: 72-76. 10.2174/187221308783399306.PubMedCrossRef Kasperska-Zajac A, Brzoza Z, Rogala B: Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pat Inflamm Allergy Drug Discov. 2008, 2: 72-76. 10.2174/187221308783399306.PubMedCrossRef
13.
go back to reference Nathan N, Denizot Y, Huc MC, Claverie C, Laubie B, Benveniste J, Arnoux B: Elevated levels of paf-acether in blood of patients with type 1 diabetes mellitus. Diabete Metab. 1992, 18: 59-62.PubMed Nathan N, Denizot Y, Huc MC, Claverie C, Laubie B, Benveniste J, Arnoux B: Elevated levels of paf-acether in blood of patients with type 1 diabetes mellitus. Diabete Metab. 1992, 18: 59-62.PubMed
14.
go back to reference Tsoupras AB, Iatrou C, Frangia C, Demopoulos CA: The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants. Infect Disord Drug Targets. 2009, 9: 390-399.PubMedCrossRef Tsoupras AB, Iatrou C, Frangia C, Demopoulos CA: The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants. Infect Disord Drug Targets. 2009, 9: 390-399.PubMedCrossRef
15.
go back to reference Tsoupras AB, Chini M, Tsogas N, Fragopoulou E, Nomikos T, Lioni A, Mangafas N, Demopoulos CA, Antonopoulou S, Lazanas MC: Anti-platelet-activating factor effects of highly active antiretroviral therapy (HAART): a new insight in the drug therapy of HIV infection?. AIDS Res Hum Retroviruses. 2008, 24: 1079-1086. 10.1089/aid.2007.0263.PubMedCrossRef Tsoupras AB, Chini M, Tsogas N, Fragopoulou E, Nomikos T, Lioni A, Mangafas N, Demopoulos CA, Antonopoulou S, Lazanas MC: Anti-platelet-activating factor effects of highly active antiretroviral therapy (HAART): a new insight in the drug therapy of HIV infection?. AIDS Res Hum Retroviruses. 2008, 24: 1079-1086. 10.1089/aid.2007.0263.PubMedCrossRef
16.
go back to reference Fink MP: Therapeutic options directed against platelet activating factor, eicosanoids and bradykinin in sepsis. J Antimicrob Chemother. 1998, 41 (Suppl A): 81-94.PubMedCrossRef Fink MP: Therapeutic options directed against platelet activating factor, eicosanoids and bradykinin in sepsis. J Antimicrob Chemother. 1998, 41 (Suppl A): 81-94.PubMedCrossRef
17.
go back to reference Moreno SE, Alves-Filho JC, Rios-Santos F, Silva JS, Ferreira SH, Cunha FQ, Teixeira MM: Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J Immunol. 2006, 177: 1264-1271.PubMedCrossRef Moreno SE, Alves-Filho JC, Rios-Santos F, Silva JS, Ferreira SH, Cunha FQ, Teixeira MM: Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J Immunol. 2006, 177: 1264-1271.PubMedCrossRef
18.
go back to reference Heuer HO: Involvement of platelet-activating factor (PAF) in septic shock and priming as indicated by the effect of hetrazepinoic PAF antagonists. Lipids. 1991, 26: 1369-1373. 10.1007/BF02536569.PubMedCrossRef Heuer HO: Involvement of platelet-activating factor (PAF) in septic shock and priming as indicated by the effect of hetrazepinoic PAF antagonists. Lipids. 1991, 26: 1369-1373. 10.1007/BF02536569.PubMedCrossRef
19.
go back to reference Tetta C, Mariano F, Buades J, Ronco C, Wratten ML, Camussi G: Relevance of platelet-activating factor in inflammation and sepsis: mechanisms and kinetics of removal in extracorporeal treatments. Am J Kidney Dis. 1997, 30 (5 Suppl 4): 57-65.CrossRef Tetta C, Mariano F, Buades J, Ronco C, Wratten ML, Camussi G: Relevance of platelet-activating factor in inflammation and sepsis: mechanisms and kinetics of removal in extracorporeal treatments. Am J Kidney Dis. 1997, 30 (5 Suppl 4): 57-65.CrossRef
20.
go back to reference Graham RM, Strahan ME, Norman KW, Watkins DN, Sturm MJ, Taylor RR: Platelet and plasma platelet-activating factor in sepsis and myocardial infarction. J Lipid Mediat Cell Signal. 1994, 9: 167-182.PubMed Graham RM, Strahan ME, Norman KW, Watkins DN, Sturm MJ, Taylor RR: Platelet and plasma platelet-activating factor in sepsis and myocardial infarction. J Lipid Mediat Cell Signal. 1994, 9: 167-182.PubMed
21.
go back to reference Ayala A, Chaudry IH: Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz. 1996, 4: 265-275.PubMed Ayala A, Chaudry IH: Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz. 1996, 4: 265-275.PubMed
22.
go back to reference Anderson BO, Bensard DD, Harken AH: The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg Gynecol Obstet. 1991, 172: 415-424.PubMed Anderson BO, Bensard DD, Harken AH: The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg Gynecol Obstet. 1991, 172: 415-424.PubMed
23.
go back to reference Suputtamongkol Y, Intaranongpai S, Smith MD, Angus B, Chaowagul W, Permpikul C, Simpson JA, Leelarasamee A, Curtis L, White NJ: A double-blind placebo-controlled study of an infusion of lexipafant (Platelet-activating factor receptor antagonist) in patients with severe sepsis. Antimicrob Agents Chemother. 2000, 44: 693-696. 10.1128/AAC.44.3.693-696.2000.PubMedPubMedCentralCrossRef Suputtamongkol Y, Intaranongpai S, Smith MD, Angus B, Chaowagul W, Permpikul C, Simpson JA, Leelarasamee A, Curtis L, White NJ: A double-blind placebo-controlled study of an infusion of lexipafant (Platelet-activating factor receptor antagonist) in patients with severe sepsis. Antimicrob Agents Chemother. 2000, 44: 693-696. 10.1128/AAC.44.3.693-696.2000.PubMedPubMedCentralCrossRef
24.
go back to reference Negro Alvarez JM, Miralles López JC, Ortiz Martínez JL, Abellán Alemán A, Rubio del Barrio R: Platelet-activating factor antagonists. Allergol Immunopathol. 1997, 25: 249-258. Negro Alvarez JM, Miralles López JC, Ortiz Martínez JL, Abellán Alemán A, Rubio del Barrio R: Platelet-activating factor antagonists. Allergol Immunopathol. 1997, 25: 249-258.
25.
go back to reference Tsoupras AB, Fragopoulou E, Nomikos T, Iatrou C, Antonopoulou S, Demopoulos CA: Characterization of the de novo biosynthetic enzyme of platelet activating factor, DDT-insensitive cholinephosphotransferase, of human mesangial cells. Mediators Inflamm. 2007, 2007: 27683-PubMedPubMedCentralCrossRef Tsoupras AB, Fragopoulou E, Nomikos T, Iatrou C, Antonopoulou S, Demopoulos CA: Characterization of the de novo biosynthetic enzyme of platelet activating factor, DDT-insensitive cholinephosphotransferase, of human mesangial cells. Mediators Inflamm. 2007, 2007: 27683-PubMedPubMedCentralCrossRef
26.
go back to reference Gomes RN, Bozza FA, Amâncio RT, Japiassú AM, Vianna RC, Larangeira AP, Gouvêa JM, Bastos MS, Zimmerman GA, Stafforini DM, Prescott SM, Bozza PT, Castro-Faria-Neto HC: Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis. Shock. 2006, 26: 41-49.PubMedCrossRef Gomes RN, Bozza FA, Amâncio RT, Japiassú AM, Vianna RC, Larangeira AP, Gouvêa JM, Bastos MS, Zimmerman GA, Stafforini DM, Prescott SM, Bozza PT, Castro-Faria-Neto HC: Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis. Shock. 2006, 26: 41-49.PubMedCrossRef
27.
go back to reference Demopoulos CA, Koussissis S, Lazanas M, Lakrakis-Lazanas K: PAF of biological fluids in disease: I. Levels in blood and urine in cancer. Clin Chem Enzymol Commun. 1990, 3: 41- Demopoulos CA, Koussissis S, Lazanas M, Lakrakis-Lazanas K: PAF of biological fluids in disease: I. Levels in blood and urine in cancer. Clin Chem Enzymol Commun. 1990, 3: 41-
28.
go back to reference Tsoukatos D, Demopoulos CA, Tselepis AD, Moschidis MC, Donos A, Evangelou A, Benveniste J: Inhibition of cardiolipins of platelet-activating factor-induced rabbit platelet activation. Lipids. 1993, 28: 1119-1124. 10.1007/BF02537080.PubMedCrossRef Tsoukatos D, Demopoulos CA, Tselepis AD, Moschidis MC, Donos A, Evangelou A, Benveniste J: Inhibition of cardiolipins of platelet-activating factor-induced rabbit platelet activation. Lipids. 1993, 28: 1119-1124. 10.1007/BF02537080.PubMedCrossRef
29.
go back to reference Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959, 37: 911-917. 10.1139/o59-099.PubMedCrossRef Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959, 37: 911-917. 10.1139/o59-099.PubMedCrossRef
30.
go back to reference Antonopoulou S, Demopoulos CA, Iatrou C, Moustakas G, Zirogiannis P: Platelet-activating factor acetylhydrolase (PAF-AH) in human kidney. Int J Biochem. 1994, 26: 1157-1162. 10.1016/0020-711X(94)90138-4.PubMedCrossRef Antonopoulou S, Demopoulos CA, Iatrou C, Moustakas G, Zirogiannis P: Platelet-activating factor acetylhydrolase (PAF-AH) in human kidney. Int J Biochem. 1994, 26: 1157-1162. 10.1016/0020-711X(94)90138-4.PubMedCrossRef
31.
go back to reference Bradford MM: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.PubMedCrossRef Bradford MM: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.PubMedCrossRef
32.
go back to reference Levi M: The coagulant response in sepsis and inflammation. Hamostaseologie. 2010, 30: 10-12. 14-16PubMed Levi M: The coagulant response in sepsis and inflammation. Hamostaseologie. 2010, 30: 10-12. 14-16PubMed
33.
go back to reference Shimizu T: Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009, 49: 123-150. 10.1146/annurev.pharmtox.011008.145616.PubMedCrossRef Shimizu T: Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009, 49: 123-150. 10.1146/annurev.pharmtox.011008.145616.PubMedCrossRef
34.
go back to reference Melnikova VO, Balasubramanian K, Villares GJ, Dobroff AS, Zigler M, Wang H, Petersson F, Price JE, Schroit A, Prieto VG, Hung MC, Bar-Eli M: Crosstalk between protease-activated receptor 1 and platelet activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression andmelanomametastasis. Journal of Biological Chemistry. 2009, 284: 28845-28855. 10.1074/jbc.M109.042150.PubMedPubMedCentralCrossRef Melnikova VO, Balasubramanian K, Villares GJ, Dobroff AS, Zigler M, Wang H, Petersson F, Price JE, Schroit A, Prieto VG, Hung MC, Bar-Eli M: Crosstalk between protease-activated receptor 1 and platelet activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression andmelanomametastasis. Journal of Biological Chemistry. 2009, 284: 28845-28855. 10.1074/jbc.M109.042150.PubMedPubMedCentralCrossRef
35.
go back to reference Melnikova VO, Bar-Eli M: Inflammation and melanoma metastasis. Pigment Cell and Melanoma Research. 2009, 22: 257-267. 10.1111/j.1755-148X.2009.00570.x.PubMedCrossRef Melnikova VO, Bar-Eli M: Inflammation and melanoma metastasis. Pigment Cell and Melanoma Research. 2009, 22: 257-267. 10.1111/j.1755-148X.2009.00570.x.PubMedCrossRef
36.
go back to reference Fletcher JR, DiSimone AG, Earnest MA: Platelet activating factor receptor antagonist improves survival and attenuates eicosanoid release in severe endotoxemia. Ann Surg. 1990, 211: 312-316.PubMedPubMedCentral Fletcher JR, DiSimone AG, Earnest MA: Platelet activating factor receptor antagonist improves survival and attenuates eicosanoid release in severe endotoxemia. Ann Surg. 1990, 211: 312-316.PubMedPubMedCentral
37.
go back to reference Izquierdo I, Merlos M, García-Rafanell J: Rupatadine: a new selective histamine H1 receptor and platelet-activating factor (PAF) antagonist. A review of pharmacological profile and clinical management of allergic rhinitis. Drugs Today. 2003, 39: 451-468. 10.1358/dot.2003.39.6.799450.PubMedCrossRef Izquierdo I, Merlos M, García-Rafanell J: Rupatadine: a new selective histamine H1 receptor and platelet-activating factor (PAF) antagonist. A review of pharmacological profile and clinical management of allergic rhinitis. Drugs Today. 2003, 39: 451-468. 10.1358/dot.2003.39.6.799450.PubMedCrossRef
Metadata
Title
In vitro anti-inflammatory and anti-coagulant effects of antibiotics towards Platelet Activating Factor and thrombin
Authors
Alexandros B Tsoupras
Maria Chini
Nickolaos Tsogas
Athina Lioni
George Tsekes
Constantinos A Demopoulos
Marios C Lazanas
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2011
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/1476-9255-8-17

Other articles of this Issue 1/2011

Journal of Inflammation 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.