Skip to main content
Top
Published in: BMC Infectious Diseases 1/2011

Open Access 01-12-2011 | Research article

In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide

Authors: Deirdre E O'Hanlon, Thomas R Moench, Richard A Cone

Published in: BMC Infectious Diseases | Issue 1/2011

Login to get access

Abstract

Background

Hydrogen peroxide (H2O2) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H2O2 are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H2O2. Here we used conditions more like those in vivo to compare the effects of physiologically plausible concentrations of H2O2 and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli.

Methods

Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H2O2, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H2O2 and lactic acid was also measured.

Results

Physiological concentrations of H2O2 (< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H2O2. At 10 mM, H2O2 inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H2O2. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid.

Conclusions

Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H2O2 produced no detectable inactivation of either BV-associated bacteria or vaginal lactobacilli. Moreover, at very high concentrations, H2O2 was more toxic to vaginal lactobacilli than to BV-associated bacteria. On the basis of these in vitro observations, we conclude that lactic acid, not H2O2, is likely to suppress BV-associated bacteria in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, Critchlow CM, Holmes KK: Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol. 1989, 27: 251-256.PubMedPubMedCentral Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, Critchlow CM, Holmes KK: Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol. 1989, 27: 251-256.PubMedPubMedCentral
2.
go back to reference Al-Mushrif S, Jones BM: A study of the prevalence of hydrogen peroxide generating Lactobacilli in bacterial vaginosis: the determination of H2O2 concentrations generated in vitro by isolated strains and the levels found in vaginal secretions of women with and without infection. J Obstet Gynaecol. 1998, 18: 63-67. 10.1080/01443619868325.CrossRefPubMed Al-Mushrif S, Jones BM: A study of the prevalence of hydrogen peroxide generating Lactobacilli in bacterial vaginosis: the determination of H2O2 concentrations generated in vitro by isolated strains and the levels found in vaginal secretions of women with and without infection. J Obstet Gynaecol. 1998, 18: 63-67. 10.1080/01443619868325.CrossRefPubMed
3.
go back to reference Cherpes TL, Hillier SL, Meyn LA, Busch JL, Krohn MA: A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive Herpes Simplex Virus Type 2 serology. Sex Trans Dis. 2008, 35: 78-83. 10.1097/OLQ.0b013e318156a5d0.CrossRef Cherpes TL, Hillier SL, Meyn LA, Busch JL, Krohn MA: A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive Herpes Simplex Virus Type 2 serology. Sex Trans Dis. 2008, 35: 78-83. 10.1097/OLQ.0b013e318156a5d0.CrossRef
4.
go back to reference Klebanoff SJ, Hillier SL, Eschenbach DA, Waltersdorph AM: Control of the microbial flora of the vagina by H2O2-generating lactobacilli. JID. 1991, 164: 94-100. 10.1093/infdis/164.1.94.CrossRefPubMed Klebanoff SJ, Hillier SL, Eschenbach DA, Waltersdorph AM: Control of the microbial flora of the vagina by H2O2-generating lactobacilli. JID. 1991, 164: 94-100. 10.1093/infdis/164.1.94.CrossRefPubMed
5.
go back to reference Atassi F, Brassart D, Grob P, Servin AL: Lactobacillus strains isolated from the vagina of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol Med Microbiol. 2006, 48: 424-432. 10.1111/j.1574-695X.2006.00162.x.CrossRefPubMed Atassi F, Brassart D, Grob P, Servin AL: Lactobacillus strains isolated from the vagina of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol Med Microbiol. 2006, 48: 424-432. 10.1111/j.1574-695X.2006.00162.x.CrossRefPubMed
6.
go back to reference Falagas ME, Betsi GI, Athanasiou S: Probiotics for treatment of women with bacterial vaginosis. Clin Microbiol Infect. 2007, 13: 657-664. 10.1111/j.1469-0691.2007.01688.x.CrossRefPubMed Falagas ME, Betsi GI, Athanasiou S: Probiotics for treatment of women with bacterial vaginosis. Clin Microbiol Infect. 2007, 13: 657-664. 10.1111/j.1469-0691.2007.01688.x.CrossRefPubMed
7.
go back to reference Xu HY, Tian WH, Wan CX, JIa LJ, Wang LY, Yuan J, Liu CM, Zeng M, Wei H: Antagonistic potential against pathogenic microorganisms and hydrogen production of indigenous lactobacilli isolated from the vagina of Chinese pregnant women. Biomed Environ Sci. 2008, 21: 365-371. 10.1016/S0895-3988(08)60056-2.CrossRefPubMed Xu HY, Tian WH, Wan CX, JIa LJ, Wang LY, Yuan J, Liu CM, Zeng M, Wei H: Antagonistic potential against pathogenic microorganisms and hydrogen production of indigenous lactobacilli isolated from the vagina of Chinese pregnant women. Biomed Environ Sci. 2008, 21: 365-371. 10.1016/S0895-3988(08)60056-2.CrossRefPubMed
8.
go back to reference Martín R, Soberón N, Vaneechoutte M, Flórez AB, Vázquez F, Suárez JE: Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. Int Microbiol. 2008, 11: 261-266.PubMed Martín R, Soberón N, Vaneechoutte M, Flórez AB, Vázquez F, Suárez JE: Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. Int Microbiol. 2008, 11: 261-266.PubMed
9.
go back to reference O'Hanlon DE, Lanier BR, Moench TR, Cone RA: Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli. BMC Infect Dis. 2010, 10: 120-10.1186/1471-2334-10-120.CrossRefPubMedPubMedCentral O'Hanlon DE, Lanier BR, Moench TR, Cone RA: Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli. BMC Infect Dis. 2010, 10: 120-10.1186/1471-2334-10-120.CrossRefPubMedPubMedCentral
10.
go back to reference Alpay-Karaoğlu S, Aydin F, Kiliç SS, Kiliç AO: Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turk J Med Sci. 2002, 33: 7-12. Alpay-Karaoğlu S, Aydin F, Kiliç SS, Kiliç AO: Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turk J Med Sci. 2002, 33: 7-12.
11.
go back to reference Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, Gurguis A, Faro S: Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001, 185: 375-9. 10.1067/mob.2001.115867.CrossRefPubMed Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, Gurguis A, Faro S: Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001, 185: 375-9. 10.1067/mob.2001.115867.CrossRefPubMed
12.
go back to reference Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Marcías ME: Characteristics of a bacteriocins-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Env Microbiol. 1991, 65: 5631-5. Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Marcías ME: Characteristics of a bacteriocins-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Env Microbiol. 1991, 65: 5631-5.
13.
go back to reference Boris S, Barbés C: Role played by lactobacilli in controlling the population of vaginal pathogens. Microb Infect. 2000, 2: 543-6. 10.1016/S1286-4579(00)00313-0.CrossRef Boris S, Barbés C: Role played by lactobacilli in controlling the population of vaginal pathogens. Microb Infect. 2000, 2: 543-6. 10.1016/S1286-4579(00)00313-0.CrossRef
14.
go back to reference Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol. 2003, 57: 395-418. 10.1146/annurev.micro.57.030502.090938.CrossRefPubMed Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol. 2003, 57: 395-418. 10.1146/annurev.micro.57.030502.090938.CrossRefPubMed
15.
go back to reference Imlay JA: How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol. 2002, 46: 111-53.CrossRefPubMed Imlay JA: How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol. 2002, 46: 111-53.CrossRefPubMed
16.
go back to reference Kashket ER: Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerence. FEMS Microbiol Rev. 1987, 46: 233-44. 10.1111/j.1574-6968.1987.tb02463.x.CrossRef Kashket ER: Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerence. FEMS Microbiol Rev. 1987, 46: 233-44. 10.1111/j.1574-6968.1987.tb02463.x.CrossRef
17.
go back to reference Russell JB, Diez-Gonzalez F: The effects of fermentation acids on bacterial growth. Adv Microb Physiol. 1998, 39: 205-34.CrossRefPubMed Russell JB, Diez-Gonzalez F: The effects of fermentation acids on bacterial growth. Adv Microb Physiol. 1998, 39: 205-34.CrossRefPubMed
18.
go back to reference Diez-Gonzalez F, Russell JB: The ability Escherichia coli O157:H7 to decease its intracellular pH and resist the toxicity of acetic acid. Microbiology. 1997, 143: 1175-80. 10.1099/00221287-143-4-1175.CrossRefPubMed Diez-Gonzalez F, Russell JB: The ability Escherichia coli O157:H7 to decease its intracellular pH and resist the toxicity of acetic acid. Microbiology. 1997, 143: 1175-80. 10.1099/00221287-143-4-1175.CrossRefPubMed
19.
go back to reference Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM: Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. App Environ Microbiol. 2000, 66: 2001-5. 10.1128/AEM.66.5.2001-2005.2000.CrossRef Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM: Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. App Environ Microbiol. 2000, 66: 2001-5. 10.1128/AEM.66.5.2001-2005.2000.CrossRef
20.
go back to reference Stanek R, Gain RE, Glover DD, Larsen B: High performance ion exclusion chromatographic characterization of the vaginal organic acids in women with bacterial vaginosis. Biomed Chromatogr. 1992, 6: 231-5. 10.1002/bmc.1130060506.CrossRefPubMed Stanek R, Gain RE, Glover DD, Larsen B: High performance ion exclusion chromatographic characterization of the vaginal organic acids in women with bacterial vaginosis. Biomed Chromatogr. 1992, 6: 231-5. 10.1002/bmc.1130060506.CrossRefPubMed
21.
go back to reference Chaudry AN, Travers PJ, Yuenger J, Colletta L, Evans P, Zenilman JM, Tummon A: Analysis of vaginal acetic acid in patients undergoing treatment for bacterial vaginosis. J Clin Microbiol. 2004, 42: 5170-5. 10.1128/JCM.42.11.5170-5175.2004.CrossRefPubMedPubMedCentral Chaudry AN, Travers PJ, Yuenger J, Colletta L, Evans P, Zenilman JM, Tummon A: Analysis of vaginal acetic acid in patients undergoing treatment for bacterial vaginosis. J Clin Microbiol. 2004, 42: 5170-5. 10.1128/JCM.42.11.5170-5175.2004.CrossRefPubMedPubMedCentral
22.
go back to reference Shedlovsky L, Belcher D, Levenstein I: Titrations of human seminal fluid with acids and alkalis and their effects on the survival of sperm motility. Am J Physiol. 1942, 136: 535-541. Shedlovsky L, Belcher D, Levenstein I: Titrations of human seminal fluid with acids and alkalis and their effects on the survival of sperm motility. Am J Physiol. 1942, 136: 535-541.
23.
go back to reference Sommer F, Caspers HP, Esders K, Klotz T, Engelman U: Measurement of vaginal and minor labial oxygen tension for the evaluation of female sexual function. J Urol. 2001, 166: 2324-5.CrossRef Sommer F, Caspers HP, Esders K, Klotz T, Engelman U: Measurement of vaginal and minor labial oxygen tension for the evaluation of female sexual function. J Urol. 2001, 166: 2324-5.CrossRef
24.
go back to reference Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA: Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999, 10: 5170-5. Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA: Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999, 10: 5170-5.
25.
26.
27.
go back to reference Jett BD, Hatter KL, Huycke MM, Gilmore M: Simplified agar plate method for quantifying viable bacteria. BioTechniques. 1997, 23: 648-650.PubMed Jett BD, Hatter KL, Huycke MM, Gilmore M: Simplified agar plate method for quantifying viable bacteria. BioTechniques. 1997, 23: 648-650.PubMed
28.
go back to reference Boskey ER, Moench TR, Hees PS, Cone RA: A self-sampling method to obtain large volumes of undiluted cervicovaginal fluids. Sex Trans Dis. 2003, 30: 107-109. 10.1097/00007435-200302000-00002.CrossRef Boskey ER, Moench TR, Hees PS, Cone RA: A self-sampling method to obtain large volumes of undiluted cervicovaginal fluids. Sex Trans Dis. 2003, 30: 107-109. 10.1097/00007435-200302000-00002.CrossRef
29.
go back to reference O'Hanlon DE, Moench TR, Harrold S, Cone RA: Microbicide production by vaginal lactobacilli: vaginal acidity (pH) and lactic acid or more potent than previously reported. Poster presentation. Microbicides New Delhi. 2008, Feb 24-28 2008 O'Hanlon DE, Moench TR, Harrold S, Cone RA: Microbicide production by vaginal lactobacilli: vaginal acidity (pH) and lactic acid or more potent than previously reported. Poster presentation. Microbicides New Delhi. 2008, Feb 24-28 2008
30.
go back to reference Morison L, Ekpo G, West B, Demba E, Mayaud P, Coleman R, Bailey R, Walraven G: Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm Infect. 2005, 81: 242-247. 10.1136/sti.2004.011684.CrossRefPubMedPubMedCentral Morison L, Ekpo G, West B, Demba E, Mayaud P, Coleman R, Bailey R, Walraven G: Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm Infect. 2005, 81: 242-247. 10.1136/sti.2004.011684.CrossRefPubMedPubMedCentral
31.
go back to reference Brotman RM, Ravel J, Cone RA, Zenilman JM: Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Infect. 2010, 86: 297-302. 10.1136/sti.2009.040592.CrossRefPubMedPubMedCentral Brotman RM, Ravel J, Cone RA, Zenilman JM: Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Infect. 2010, 86: 297-302. 10.1136/sti.2009.040592.CrossRefPubMedPubMedCentral
32.
go back to reference Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Macías ME: Selection of vaginal H2O2-generating Lactobacillus species for probiotic use. Curr Microbiol. 1999, 38: 279-84. 10.1007/PL00006802.CrossRefPubMed Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Macías ME: Selection of vaginal H2O2-generating Lactobacillus species for probiotic use. Curr Microbiol. 1999, 38: 279-84. 10.1007/PL00006802.CrossRefPubMed
33.
go back to reference Hosoi T, Ametani A, Kiuchi K, Kaminogawa S: Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can J Microbiol. 2000, 46: 892-7.CrossRefPubMed Hosoi T, Ametani A, Kiuchi K, Kaminogawa S: Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can J Microbiol. 2000, 46: 892-7.CrossRefPubMed
Metadata
Title
In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide
Authors
Deirdre E O'Hanlon
Thomas R Moench
Richard A Cone
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2011
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-11-200

Other articles of this Issue 1/2011

BMC Infectious Diseases 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.