Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 6/2018

01-12-2018 | Research Article

Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals

Authors: Brian D. Buechel, Kenneth E. Hancock, Yoojin Chung, Bertrand Delgutte

Published in: Journal of the Association for Research in Otolaryngology | Issue 6/2018

Login to get access

Abstract

Bilateral cochlear implant (CI) users have poor perceptual sensitivity to interaural time differences (ITDs), which limits their ability to localize sounds and understand speech in noisy environments. This is especially true for high-rate (> 300 pps) periodic pulse trains, which are used as carriers in CI processors. Here, we investigate a novel stimulation strategy in which extra pulses are added to high-rate periodic pulse trains to introduce short inter-pulse intervals (SIPIs). We hypothesized that SIPIs can improve neural ITD sensitivity similarly to the effect observed by randomly jittering IPIs (Hancock et al., J. Neurophysiol. 108:714–28, 2012). To test this hypothesis, we measured ITD sensitivity of single units in the inferior colliculus (IC) of unanesthetized rabbits with bilateral CIs. Introducing SIPIs into high-rate pulse trains significantly increased firing rates for ~ 60 % of IC neurons, and the extra spikes tended to be synchronized to the SIPIs. The additional firings produced by SIPIs uncovered latent ITD sensitivity that was comparable to that observed with low-rate pulse trains. In some neurons, high spontaneous firing rates masked the ITD sensitivity introduced by SIPIs. ITD sensitivity in these neurons could be revealed by emphasizing stimulus-synchronized spikes with a coincidence detection analysis. Overall, these results with SIPIs are consistent with the effects observed previously with jittered pulse trains, with the added benefit of retaining control over the timing and number of SIPIs. A novel CI processing strategy could incorporate SIPIs by inserting them at selected times to high-rate pulse train carriers. Such a strategy could potentially improve ITD perception without degrading speech intelligibility and thereby improve outcomes for bilateral CI users.
Literature
go back to reference Aronoff JM, Yoon Y-S, Freed DJ, Vermiglio AJ, Pal I, Soli SD (2010) The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am 127:EL87–EL92CrossRefPubMedPubMedCentral Aronoff JM, Yoon Y-S, Freed DJ, Vermiglio AJ, Pal I, Soli SD (2010) The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am 127:EL87–EL92CrossRefPubMedPubMedCentral
go back to reference Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333CrossRefPubMed Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333CrossRefPubMed
go back to reference Bartlett EL, Wang X (2007) Neural representations of temporally modulated signals in the auditory thalamus of awake primates. J Neurophysiol 97:1005–1017CrossRefPubMed Bartlett EL, Wang X (2007) Neural representations of temporally modulated signals in the auditory thalamus of awake primates. J Neurophysiol 97:1005–1017CrossRefPubMed
go back to reference Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026CrossRefPubMed Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026CrossRefPubMed
go back to reference Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022CrossRefPubMed Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022CrossRefPubMed
go back to reference Cao X-J, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. J Neurophysiol 97:3961–3975CrossRefPubMed Cao X-J, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. J Neurophysiol 97:3961–3975CrossRefPubMed
go back to reference Chung Y, Delgutte B, Colburn HS (2015) Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve. J Assoc Res Otolaryngol 16:135–158CrossRefPubMed Chung Y, Delgutte B, Colburn HS (2015) Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve. J Assoc Res Otolaryngol 16:135–158CrossRefPubMed
go back to reference Chung Y, Hancock KE, Delgutte B (2016) Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J Neurosci 36:5520–5531CrossRefPubMedPubMedCentral Chung Y, Hancock KE, Delgutte B (2016) Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J Neurosci 36:5520–5531CrossRefPubMedPubMedCentral
go back to reference Chung Y, Hancock KE, Nam S-I, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218–231CrossRefPubMedPubMedCentral Chung Y, Hancock KE, Nam S-I, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218–231CrossRefPubMedPubMedCentral
go back to reference Churchill TH, Kan A, Goupell MJ, Litovsky RY (2014) Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. J Acoust Soc Am 136:1246–1256CrossRefPubMedPubMedCentral Churchill TH, Kan A, Goupell MJ, Litovsky RY (2014) Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. J Acoust Soc Am 136:1246–1256CrossRefPubMedPubMedCentral
go back to reference Colburn HS, Chung Y, Zhou Y, Brughera A (2009) Models of brainstem responses to bilateral electrical stimulation. J Assoc Res Otolaryngol 10:91–110CrossRefPubMed Colburn HS, Chung Y, Zhou Y, Brughera A (2009) Models of brainstem responses to bilateral electrical stimulation. J Assoc Res Otolaryngol 10:91–110CrossRefPubMed
go back to reference Deming WE (1943) Statistical adjustment of data. John Wiley & Sons, New York Deming WE (1943) Statistical adjustment of data. John Wiley & Sons, New York
go back to reference Dietz M, Wang L, Greenberg D, McAlpine D (2016) Sensitivity to interaural time differences conveyed in the stimulus envelope: estimating inputs of binaural neurons through the temporal analysis of spike trains. J Assoc Res Otolaryngol 17:313–330CrossRefPubMedPubMedCentral Dietz M, Wang L, Greenberg D, McAlpine D (2016) Sensitivity to interaural time differences conveyed in the stimulus envelope: estimating inputs of binaural neurons through the temporal analysis of spike trains. J Assoc Res Otolaryngol 17:313–330CrossRefPubMedPubMedCentral
go back to reference Fletcher H, Munson WA (1933) Loudness, its definition, measurement and calculation. Bell Labs Tech J 12:377–430CrossRef Fletcher H, Munson WA (1933) Loudness, its definition, measurement and calculation. Bell Labs Tech J 12:377–430CrossRef
go back to reference Franken TP, Bremen P, Joris PX (2014) Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns. Front Neural Circuits 8:42CrossRefPubMedPubMedCentral Franken TP, Bremen P, Joris PX (2014) Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns. Front Neural Circuits 8:42CrossRefPubMedPubMedCentral
go back to reference Goldberg J, Brown P (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636CrossRefPubMed Goldberg J, Brown P (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636CrossRefPubMed
go back to reference Griffin SJ, Bernstein LR, Ingham NJ, McAlpine D (2005) Neural sensitivity to interaural envelope delays in the inferior colliculus of the guinea pig. J Neurophysiol 93:3463–3478CrossRefPubMed Griffin SJ, Bernstein LR, Ingham NJ, McAlpine D (2005) Neural sensitivity to interaural envelope delays in the inferior colliculus of the guinea pig. J Neurophysiol 93:3463–3478CrossRefPubMed
go back to reference Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol 14:393–411CrossRefPubMedPubMedCentral Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol 14:393–411CrossRefPubMedPubMedCentral
go back to reference Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728CrossRefPubMedPubMedCentral Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728CrossRefPubMedPubMedCentral
go back to reference Hancock KE, Chung Y, McKinney MF, Delgutte B (2017) Temporal envelope coding by inferior colliculus neurons with cochlear implant stimulation. J Assoc Res Otolaryngol 18:771–788CrossRefPubMedPubMedCentral Hancock KE, Chung Y, McKinney MF, Delgutte B (2017) Temporal envelope coding by inferior colliculus neurons with cochlear implant stimulation. J Assoc Res Otolaryngol 18:771–788CrossRefPubMedPubMedCentral
go back to reference Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079CrossRefPubMedPubMedCentral Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079CrossRefPubMedPubMedCentral
go back to reference Heil P, Irvine DR (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78:2438–2454CrossRefPubMed Heil P, Irvine DR (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78:2438–2454CrossRefPubMed
go back to reference Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, Inc., HobokenCrossRef Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, Inc., HobokenCrossRef
go back to reference Johnson LA, Della Santina CC, Wang X (2017) Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (Callithrix jacchus). J Neurosci 37:7008–7022 Johnson LA, Della Santina CC, Wang X (2017) Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (Callithrix jacchus). J Neurosci 37:7008–7022
go back to reference Joris P, Schreiner C, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577CrossRefPubMed Joris P, Schreiner C, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577CrossRefPubMed
go back to reference Kan A, Litovsky RY, Goupell MJ (2015) Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear Hear 36:e62–e68CrossRefPubMedPubMedCentral Kan A, Litovsky RY, Goupell MJ (2015) Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear Hear 36:e62–e68CrossRefPubMedPubMedCentral
go back to reference Kan A, Stoelb C, Litovsky RY, Goupell MJ (2013) Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. J Acoust Soc Am 134:2923–2936CrossRefPubMedPubMedCentral Kan A, Stoelb C, Litovsky RY, Goupell MJ (2013) Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. J Acoust Soc Am 134:2923–2936CrossRefPubMedPubMedCentral
go back to reference Klein-Hennig M, Dietz M, Hohmann V, Ewert SD (2011) The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. J Acoust Soc Am 129:3856–3872CrossRefPubMed Klein-Hennig M, Dietz M, Hohmann V, Ewert SD (2011) The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. J Acoust Soc Am 129:3856–3872CrossRefPubMed
go back to reference Kuiper NH (1960) Tests concerning random points on a circle. Indag Math 63:38–47CrossRef Kuiper NH (1960) Tests concerning random points on a circle. Indag Math 63:38–47CrossRef
go back to reference Laback B, Egger K, Majdak P (2015) Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 322:138–150CrossRefPubMed Laback B, Egger K, Majdak P (2015) Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 322:138–150CrossRefPubMed
go back to reference Laback B, Majdak P (2008) Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci U S A 105:814–817CrossRefPubMedPubMedCentral Laback B, Majdak P (2008) Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci U S A 105:814–817CrossRefPubMedPubMedCentral
go back to reference Laback B, Majdak P, Baumgartner W-D (2007) Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing. J Acoust Soc Am 121:2182–2191CrossRefPubMed Laback B, Majdak P, Baumgartner W-D (2007) Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing. J Acoust Soc Am 121:2182–2191CrossRefPubMed
go back to reference Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM (2011) Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. J Acoust Soc Am 130:1515–1529CrossRefPubMed Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM (2011) Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. J Acoust Soc Am 130:1515–1529CrossRefPubMed
go back to reference Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S (2012) Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. J Am Acad Audiol 23:476–494CrossRefPubMedPubMedCentral Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S (2012) Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. J Am Acad Audiol 23:476–494CrossRefPubMedPubMedCentral
go back to reference Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379CrossRefPubMedPubMedCentral Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379CrossRefPubMedPubMedCentral
go back to reference Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802CrossRefPubMed Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802CrossRefPubMed
go back to reference Long CJ, Eddington DK, Colburn HS, Rabinowitz WM (2003) Binaural sensitivity as a function of interaural electrode position with a bilateral cochlear implant user. J Acoust Soc Am 114:1565–1574CrossRefPubMed Long CJ, Eddington DK, Colburn HS, Rabinowitz WM (2003) Binaural sensitivity as a function of interaural electrode position with a bilateral cochlear implant user. J Acoust Soc Am 114:1565–1574CrossRefPubMed
go back to reference Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138CrossRefPubMed Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138CrossRefPubMed
go back to reference Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880CrossRefPubMed Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880CrossRefPubMed
go back to reference Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609CrossRefPubMedPubMedCentral Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609CrossRefPubMedPubMedCentral
go back to reference Mo Z-L, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778CrossRefPubMedPubMedCentral Mo Z-L, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778CrossRefPubMedPubMedCentral
go back to reference Poon BB, Eddington DK, Noel V, Colburn HS (2009) Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. J Acoust Soc Am 126:806–815CrossRefPubMedPubMedCentral Poon BB, Eddington DK, Noel V, Colburn HS (2009) Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. J Acoust Soc Am 126:806–815CrossRefPubMedPubMedCentral
go back to reference Riss D, Arnoldner C, Baumgartner W-D, Kaider A, Hamzavi JS (2008) A new fine structure speech coding strategy: speech perception at a reduced number of channels. Otol Neurotol 29:784–788CrossRefPubMed Riss D, Arnoldner C, Baumgartner W-D, Kaider A, Hamzavi JS (2008) A new fine structure speech coding strategy: speech perception at a reduced number of channels. Otol Neurotol 29:784–788CrossRefPubMed
go back to reference Riss D, Hamzavi J, Blineder M et al (2014) FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Ear Hear 35:e272–e281CrossRefPubMed Riss D, Hamzavi J, Blineder M et al (2014) FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Ear Hear 35:e272–e281CrossRefPubMed
go back to reference Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082CrossRefPubMed Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082CrossRefPubMed
go back to reference Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 25:7887–7895CrossRefPubMed Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 25:7887–7895CrossRefPubMed
go back to reference Seeber BU, Fastl H (2008) Localization cues with bilateral cochlear implants. J Acoust Soc Am 123:1030–1042CrossRefPubMed Seeber BU, Fastl H (2008) Localization cues with bilateral cochlear implants. J Acoust Soc Am 123:1030–1042CrossRefPubMed
go back to reference Shek J, Wen G, Wisniewski H (1986) Atlas of the rabbit brain and spinal cord. S. Karger AG, Staten Island, NY Shek J, Wen G, Wisniewski H (1986) Atlas of the rabbit brain and spinal cord. S. Karger AG, Staten Island, NY
go back to reference Shofner WP, Dye RH Jr (1989) Statistical and receiver operating characteristic analysis of empirical spike-count distributions: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoust Soc Am 86:2172–2184CrossRefPubMed Shofner WP, Dye RH Jr (1989) Statistical and receiver operating characteristic analysis of empirical spike-count distributions: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoust Soc Am 86:2172–2184CrossRefPubMed
go back to reference Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877CrossRefPubMed Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877CrossRefPubMed
go back to reference Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667CrossRefPubMed Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667CrossRefPubMed
go back to reference Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750CrossRefPubMedPubMedCentral Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750CrossRefPubMedPubMedCentral
go back to reference Smith ZM, Delgutte B (2008) Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 99:2390–2407CrossRefPubMedPubMedCentral Smith ZM, Delgutte B (2008) Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 99:2390–2407CrossRefPubMedPubMedCentral
go back to reference Smith ZM, Kan A, Jones HG, Buhr-Lawler M, Godar SP, Litovsky RY (2014) Hearing better with interaural time differences and bilateral cochlear implants. J Acoust Soc Am 135:2190–2191CrossRef Smith ZM, Kan A, Jones HG, Buhr-Lawler M, Godar SP, Litovsky RY (2014) Hearing better with interaural time differences and bilateral cochlear implants. J Acoust Soc Am 135:2190–2191CrossRef
go back to reference Srinivasan S, Laback B, Majdak P, Delgutte B (2018) Introducing short interpulse intervals in high-rate pulse trains enhances binaural timing sensitivity in electric hearing. J Assoc Res Otolaryngol 19:301–315CrossRefPubMedPubMedCentral Srinivasan S, Laback B, Majdak P, Delgutte B (2018) Introducing short interpulse intervals in high-rate pulse trains enhances binaural timing sensitivity in electric hearing. J Assoc Res Otolaryngol 19:301–315CrossRefPubMedPubMedCentral
go back to reference Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019–11025CrossRefPubMedPubMedCentral Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019–11025CrossRefPubMedPubMedCentral
go back to reference Svirskis G, Kotak V, Sanes DH, Rinzel J (2004) Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons. J Neurophysiol 91:2465–2473CrossRefPubMedPubMedCentral Svirskis G, Kotak V, Sanes DH, Rinzel J (2004) Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons. J Neurophysiol 91:2465–2473CrossRefPubMedPubMedCentral
go back to reference Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506CrossRefPubMed Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506CrossRefPubMed
go back to reference Tirko NN, Ryugo DK (2012) Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. J Comp Neurol 520:2202–2217CrossRefPubMedPubMedCentral Tirko NN, Ryugo DK (2012) Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. J Comp Neurol 520:2202–2217CrossRefPubMedPubMedCentral
go back to reference van Hoesel R, Böhm M, Pesch J, Vandali A, Battmer RD, Lenarz T (2008) Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J Acoust Soc Am 123:2249–2263CrossRefPubMed van Hoesel R, Böhm M, Pesch J, Vandali A, Battmer RD, Lenarz T (2008) Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J Acoust Soc Am 123:2249–2263CrossRefPubMed
go back to reference van Hoesel RJM (2007) Sensitivity to binaural timing in bilateral cochlear implant users. J Acoust Soc Am 121:2192–2206CrossRefPubMed van Hoesel RJM (2007) Sensitivity to binaural timing in bilateral cochlear implant users. J Acoust Soc Am 121:2192–2206CrossRefPubMed
go back to reference van Hoesel RJM (2008) Observer weighting of level and timing cues in bilateral cochlear implant users. J Acoust Soc Am 124:3861–3872CrossRefPubMed van Hoesel RJM (2008) Observer weighting of level and timing cues in bilateral cochlear implant users. J Acoust Soc Am 124:3861–3872CrossRefPubMed
go back to reference van Hoesel RJM (2012) Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 288:100–113CrossRefPubMed van Hoesel RJM (2012) Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 288:100–113CrossRefPubMed
go back to reference van Hoesel RJM, Jones GL, Litovsky RY (2009) Interaural time-delay sensitivity in bilateral cochlear implant users: effects of pulse rate, modulation rate, and place of stimulation. J Assoc Res Otolaryngol 10:557–567CrossRefPubMedPubMedCentral van Hoesel RJM, Jones GL, Litovsky RY (2009) Interaural time-delay sensitivity in bilateral cochlear implant users: effects of pulse rate, modulation rate, and place of stimulation. J Assoc Res Otolaryngol 10:557–567CrossRefPubMedPubMedCentral
go back to reference van Hoesel RJM, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630CrossRefPubMed van Hoesel RJM, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630CrossRefPubMed
go back to reference Wang GI, Delgutte B (2012) Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. J Neurophysiol 108:3172–3195CrossRefPubMedPubMedCentral Wang GI, Delgutte B (2012) Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. J Neurophysiol 108:3172–3195CrossRefPubMedPubMedCentral
Metadata
Title
Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals
Authors
Brian D. Buechel
Kenneth E. Hancock
Yoojin Chung
Bertrand Delgutte
Publication date
01-12-2018
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 6/2018
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-018-00693-0

Other articles of this Issue 6/2018

Journal of the Association for Research in Otolaryngology 6/2018 Go to the issue