Skip to main content
Top
Published in: European Radiology 3/2017

01-03-2017 | Physics

Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

Authors: Christina Heilmaier, Niklaus Zuber, Dominik Weishaupt

Published in: European Radiology | Issue 3/2017

Login to get access

Abstract

Objectives

The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging.

Methods

A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray × centimetre squared) and entrance surface air kerma (ESAK, milligray).

Results

During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies.

Conclusions

Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers’ dose awareness.

Key points

A dose-monitoring system enables easy dose data collection in X-ray imaging.
The system facilitates dose reduction efforts and may increase radiographers’ radiation awareness.
Mean kerma-area-product significantly declined in period 2 in 8/13 radiographs and 6/14 studies.
In ESAK a significant decline was evident in 6/13 radiographs and 5/14 studies.
Literature
1.
go back to reference Boone JM, Hendee WR, Mcnitt-Gray MF, Seltzer SE (2012) Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the Radiation Dose Summit, sponsored by NIBIB, February 24-25, 2011. Radiology 265:544–554CrossRefPubMedPubMedCentral Boone JM, Hendee WR, Mcnitt-Gray MF, Seltzer SE (2012) Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the Radiation Dose Summit, sponsored by NIBIB, February 24-25, 2011. Radiology 265:544–554CrossRefPubMedPubMedCentral
2.
go back to reference Balter S, Schueler BA, Miller DL et al (2004) Radiation doses in interventional radiology procedures: the RAD-IR Study. Part III: Dosimetric performance of the interventional fluoroscopy units. J Vasc Interv Radiol 15:919–926CrossRefPubMed Balter S, Schueler BA, Miller DL et al (2004) Radiation doses in interventional radiology procedures: the RAD-IR Study. Part III: Dosimetric performance of the interventional fluoroscopy units. J Vasc Interv Radiol 15:919–926CrossRefPubMed
3.
go back to reference Schäfer S, Alejandre-Lafont E, Schmidt T et al (2014) Dose management for X-ray and CT: systematic comparison of exposition values from two institutes to diagnostic reference levels and use of results for optimisation of exposition. Röfo 186:785–794PubMed Schäfer S, Alejandre-Lafont E, Schmidt T et al (2014) Dose management for X-ray and CT: systematic comparison of exposition values from two institutes to diagnostic reference levels and use of results for optimisation of exposition. Röfo 186:785–794PubMed
4.
go back to reference ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332CrossRef ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332CrossRef
5.
go back to reference Jones AK, Heintz P, Geiser W et al (2015) Ongoing quality control in digital radiography: report of AAPM Imaging Physics Committee Task Group 151. Med Phys 42:6658–6670CrossRefPubMed Jones AK, Heintz P, Geiser W et al (2015) Ongoing quality control in digital radiography: report of AAPM Imaging Physics Committee Task Group 151. Med Phys 42:6658–6670CrossRefPubMed
6.
go back to reference Kloth JK, Neumann R, von Stillfried E et al (2015) Quality-controlled dose reduction of full-leg radiography in patients with knee malalignment. Skelet Radiol 44:423–429CrossRef Kloth JK, Neumann R, von Stillfried E et al (2015) Quality-controlled dose reduction of full-leg radiography in patients with knee malalignment. Skelet Radiol 44:423–429CrossRef
7.
go back to reference Kloth JK, Wiedenhoefer B, Stiller W et al (2013) Modern digital plain-radiography of the whole spine in scoliosis patients – dose reduction and quality criteria. Röfo 185:48–54PubMed Kloth JK, Wiedenhoefer B, Stiller W et al (2013) Modern digital plain-radiography of the whole spine in scoliosis patients – dose reduction and quality criteria. Röfo 185:48–54PubMed
8.
go back to reference Kloth JK, Rickert M, Gotterbarm T et al (2015) Pelvic X-ray examinations in follow-up of hip arthroplasty or femoral osteosynthesis – dose reduction and quality criteria. Eur J Radiol 84:915–920CrossRefPubMed Kloth JK, Rickert M, Gotterbarm T et al (2015) Pelvic X-ray examinations in follow-up of hip arthroplasty or femoral osteosynthesis – dose reduction and quality criteria. Eur J Radiol 84:915–920CrossRefPubMed
9.
go back to reference Stewart BK, Kanal KM, Perdue JR, Mann FA (2007) Computed radiography dose data mining and surveillance as an ongoing quality assurance improvement process. AJR Am J Roentgenol 189:7–11CrossRefPubMed Stewart BK, Kanal KM, Perdue JR, Mann FA (2007) Computed radiography dose data mining and surveillance as an ongoing quality assurance improvement process. AJR Am J Roentgenol 189:7–11CrossRefPubMed
10.
go back to reference Strotzer M, Völk M, Wild T et al (2000) Simulated bone erosions in a hand phantom: detection with conventional screen-film technology versus cesium iodide-amorphous silicon flat-panel detector. Radiology 215:512–515CrossRefPubMed Strotzer M, Völk M, Wild T et al (2000) Simulated bone erosions in a hand phantom: detection with conventional screen-film technology versus cesium iodide-amorphous silicon flat-panel detector. Radiology 215:512–515CrossRefPubMed
11.
go back to reference Goo JM, Im JG, Kim JH et al (2000) Digital chest radiography with a selenium-based flat-panel detector versus a storage phosphor system: comparison of soft-copy images. AJR Am J Roentgenol 175:1013–1018CrossRefPubMed Goo JM, Im JG, Kim JH et al (2000) Digital chest radiography with a selenium-based flat-panel detector versus a storage phosphor system: comparison of soft-copy images. AJR Am J Roentgenol 175:1013–1018CrossRefPubMed
12.
go back to reference Bacher K, Smeets P, Bonnarens K et al (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929CrossRefPubMed Bacher K, Smeets P, Bonnarens K et al (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929CrossRefPubMed
13.
go back to reference Völk M, Hamer OW, Feuerbach S, Strotzer M (2004) Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature. Eur Radiol 14:827–834CrossRefPubMed Völk M, Hamer OW, Feuerbach S, Strotzer M (2004) Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature. Eur Radiol 14:827–834CrossRefPubMed
14.
go back to reference Menser B, Manke D, Mentrup D, Neitzel U (2015) A Monte-Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography. Radiat Prot Dosim. doi:10.1093/rpd/ncv483 Menser B, Manke D, Mentrup D, Neitzel U (2015) A Monte-Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography. Radiat Prot Dosim. doi:10.​1093/​rpd/​ncv483
15.
go back to reference Wirth S, Treitl M, Reiser MF, Körner M (2009) Imaging performance with different doses in skeletal radiography: comparison of a needle-structured and a conventional storage phosphor system with a flat-panel detector. Radiology 250:152–160CrossRefPubMed Wirth S, Treitl M, Reiser MF, Körner M (2009) Imaging performance with different doses in skeletal radiography: comparison of a needle-structured and a conventional storage phosphor system with a flat-panel detector. Radiology 250:152–160CrossRefPubMed
16.
go back to reference Alves AF, Alvarez M, Ribeiro SM, Duarte SB, Miranda JR, Pina DR (2016) Association between subjective evaluation and physical parameters for radiographic images optimization. Phys Med 32:123–132CrossRefPubMed Alves AF, Alvarez M, Ribeiro SM, Duarte SB, Miranda JR, Pina DR (2016) Association between subjective evaluation and physical parameters for radiographic images optimization. Phys Med 32:123–132CrossRefPubMed
17.
go back to reference Sandborg M, Tingberg A, Ullman G et al (2006) Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys 33:4169–4175CrossRefPubMed Sandborg M, Tingberg A, Ullman G et al (2006) Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys 33:4169–4175CrossRefPubMed
18.
go back to reference Heilmaier C, Niklaus Z, Berthold C, Kara L, Weishaupt D (2015) Improving patient safety: implementing dose monitoring software in fluoroscopically guided interventions. J Vasc Interv Radiol 26:1699–1709CrossRefPubMed Heilmaier C, Niklaus Z, Berthold C, Kara L, Weishaupt D (2015) Improving patient safety: implementing dose monitoring software in fluoroscopically guided interventions. J Vasc Interv Radiol 26:1699–1709CrossRefPubMed
19.
go back to reference Heilmaier C, Zuber N, Bruijns B, Ceyrolle C, Weishaupt D (2016) Implementation of dose monitoring software in the clinical routine: first experiences. Röfo 188:82–88PubMed Heilmaier C, Zuber N, Bruijns B, Ceyrolle C, Weishaupt D (2016) Implementation of dose monitoring software in the clinical routine: first experiences. Röfo 188:82–88PubMed
20.
go back to reference Seuri R, Rehani MM, Kortesniemi M (2013) How tracking radiologic procedures and dose helps: experience from Finland. AJR Am J Roentgenol 200:771–775CrossRefPubMed Seuri R, Rehani MM, Kortesniemi M (2013) How tracking radiologic procedures and dose helps: experience from Finland. AJR Am J Roentgenol 200:771–775CrossRefPubMed
21.
go back to reference Alsuwaidi JS, Albalooshi LG, Alawadhi HM et al (2013) Continuous monitoring of CT dose indexes at Dubai Hospital. AJR Am J Roentgenol 201:858–864CrossRefPubMed Alsuwaidi JS, Albalooshi LG, Alawadhi HM et al (2013) Continuous monitoring of CT dose indexes at Dubai Hospital. AJR Am J Roentgenol 201:858–864CrossRefPubMed
22.
go back to reference Bundesamt für Gesundheit [Federal Office of Public Health] (2010) Weisung R-08-06: Qualitätsprüfungen an digitalen Röntgenanlagen für Aufnahmen und/oder Durchleuchtung [Quality control at digital x-ray units for imaging and/or fluoroscopy] Bundesamt für Gesundheit [Federal Office of Public Health] (2010) Weisung R-08-06: Qualitätsprüfungen an digitalen Röntgenanlagen für Aufnahmen und/oder Durchleuchtung [Quality control at digital x-ray units for imaging and/or fluoroscopy]
23.
go back to reference Zoetelief J, van Soldt RTM, Suliman II, Jansen JT, Bosmans H (2005) Quality control of equipment used in digital and interventional radiology. Radiat Prot Dosim 117:277–282CrossRef Zoetelief J, van Soldt RTM, Suliman II, Jansen JT, Bosmans H (2005) Quality control of equipment used in digital and interventional radiology. Radiat Prot Dosim 117:277–282CrossRef
24.
go back to reference Kostova-Lefterova D, Taseva D, Hristova-Popova J, Vassileva J (2015) Optimisation of paediatric chest radiography. Radiat Prot Dosim 165:231–234CrossRef Kostova-Lefterova D, Taseva D, Hristova-Popova J, Vassileva J (2015) Optimisation of paediatric chest radiography. Radiat Prot Dosim 165:231–234CrossRef
25.
go back to reference Macgregor K, Li I, Dowdell T, Gray BG (2015) Identifying institutional diagnostic reference levels for CT with radiation dose index monitoring software. Radiology 276:507–517CrossRefPubMed Macgregor K, Li I, Dowdell T, Gray BG (2015) Identifying institutional diagnostic reference levels for CT with radiation dose index monitoring software. Radiology 276:507–517CrossRefPubMed
26.
go back to reference Gold GE, Cicuttini F, Crema MD et al (2015) OARSI Clinical Trials Recommendations: hip imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:716–731CrossRefPubMedPubMedCentral Gold GE, Cicuttini F, Crema MD et al (2015) OARSI Clinical Trials Recommendations: hip imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:716–731CrossRefPubMedPubMedCentral
27.
go back to reference Hunter DJ, Arden N, Cicuttini F et al (2015) OARSI Clinical Trials Recommendations: hand imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:732–746CrossRefPubMed Hunter DJ, Arden N, Cicuttini F et al (2015) OARSI Clinical Trials Recommendations: hand imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:732–746CrossRefPubMed
28.
go back to reference Hunter DJ, Altman RD, Cicuttini F et al (2015) OARSI Clinical Trials Recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:698–715CrossRefPubMed Hunter DJ, Altman RD, Cicuttini F et al (2015) OARSI Clinical Trials Recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthr Cartil 23:698–715CrossRefPubMed
29.
go back to reference Mccomb BL, Chung JH, Crabtree TD et al (2016) ACR appropriateness Criteria® routine chest radiography. J Thorac Imaging 31:W13–W15CrossRefPubMed Mccomb BL, Chung JH, Crabtree TD et al (2016) ACR appropriateness Criteria® routine chest radiography. J Thorac Imaging 31:W13–W15CrossRefPubMed
30.
go back to reference Suh RD, Genshaft SJ, Kirsch J et al (2015) ACR appropriateness Criteria® intensive care unit patients. J Thorac Imaging 30:W63–W65CrossRefPubMed Suh RD, Genshaft SJ, Kirsch J et al (2015) ACR appropriateness Criteria® intensive care unit patients. J Thorac Imaging 30:W63–W65CrossRefPubMed
31.
go back to reference Mekis N, McEntee M, Stegnar P (2010) PA positioning significantly reduces testicular dose during sacroiliac joint radiography. Radiography 333–338 Mekis N, McEntee M, Stegnar P (2010) PA positioning significantly reduces testicular dose during sacroiliac joint radiography. Radiography 333–338
32.
go back to reference Bundesamt für Gesundheit [Federal Office of Public Health] (2011) Weisung R-06-04: Diagnostische Referenzwerte (DRW) in der Projektionsradiologie [Diagnostic reference levels in conventional x-ray] Bundesamt für Gesundheit [Federal Office of Public Health] (2011) Weisung R-06-04: Diagnostische Referenzwerte (DRW) in der Projektionsradiologie [Diagnostic reference levels in conventional x-ray]
33.
go back to reference Brix G, Nekolla E, Griebel J (2005) Radiation exposure of patients from diagnostic and interventional X-ray procedures. Facts, assessment and trends. Radiologe 45:340–349CrossRefPubMed Brix G, Nekolla E, Griebel J (2005) Radiation exposure of patients from diagnostic and interventional X-ray procedures. Facts, assessment and trends. Radiologe 45:340–349CrossRefPubMed
34.
go back to reference Heilmaier C, Zuber N, Bruijns B, Weishaupt D (2016) Does real-time monitoring of patient dose with dose management software increase CT technologists’ radiation awareness? AJR Am J Roentgenol 206(5):1049–1055. doi:10.2214/AJR.15.15466 Heilmaier C, Zuber N, Bruijns B, Weishaupt D (2016) Does real-time monitoring of patient dose with dose management software increase CT technologists’ radiation awareness? AJR Am J Roentgenol 206(5):1049–1055. doi:10.​2214/​AJR.​15.​15466
35.
go back to reference Roch P, Aubert B (2013) French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004–2008 review. Radiat Prot Dosim 154:52–75CrossRef Roch P, Aubert B (2013) French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004–2008 review. Radiat Prot Dosim 154:52–75CrossRef
36.
go back to reference Hart D, Hillier MC, Wall BF (2009) National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. Br J Radiol 82:1–12CrossRefPubMed Hart D, Hillier MC, Wall BF (2009) National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. Br J Radiol 82:1–12CrossRefPubMed
37.
go back to reference Gray JE, Archer BR, Butler PF et al (2005) Reference values for diagnostic radiology: application and impact. Radiology 235:354–358CrossRefPubMed Gray JE, Archer BR, Butler PF et al (2005) Reference values for diagnostic radiology: application and impact. Radiology 235:354–358CrossRefPubMed
38.
go back to reference Kim Y, Choi J, Kim C et al (2007) Patient dose measurements in diagnostic radiology procedures in Korea. Radiat Prot Dosim 123:540–545CrossRef Kim Y, Choi J, Kim C et al (2007) Patient dose measurements in diagnostic radiology procedures in Korea. Radiat Prot Dosim 123:540–545CrossRef
39.
go back to reference European Commission (1999) Radiation Protection 109, Guidance on diagnostic reference levels (DRLs) for medical exposures European Commission (1999) Radiation Protection 109, Guidance on diagnostic reference levels (DRLs) for medical exposures
40.
go back to reference Rehani MM (2015) Limitations of diagnostic reference level (DRL) and introduction of acceptable quality dose (AQD). Br J Radiol 88:20140344CrossRefPubMed Rehani MM (2015) Limitations of diagnostic reference level (DRL) and introduction of acceptable quality dose (AQD). Br J Radiol 88:20140344CrossRefPubMed
41.
go back to reference Vano E, Ten JI, Fernandez-Soto JM, Sanchez-Casanueva RM (2013) Experience with patient dosimetry and quality control online for diagnostic and interventional radiology using DICOM services. AJR Am J Roentgenol 200:783–790CrossRefPubMed Vano E, Ten JI, Fernandez-Soto JM, Sanchez-Casanueva RM (2013) Experience with patient dosimetry and quality control online for diagnostic and interventional radiology using DICOM services. AJR Am J Roentgenol 200:783–790CrossRefPubMed
Metadata
Title
Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences
Authors
Christina Heilmaier
Niklaus Zuber
Dominik Weishaupt
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 3/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4390-7

Other articles of this Issue 3/2017

European Radiology 3/2017 Go to the issue