Skip to main content
Top
Published in: Diabetologia 1/2007

01-01-2007 | Article

Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects

Authors: V. B. Schrauwen-Hinderling, M. E. Kooi, M. K. C. Hesselink, J. A. L. Jeneson, W. H. Backes, C. J. A. van Echteld, J. M. A. van Engelshoven, M. Mensink, P. Schrauwen

Published in: Diabetologia | Issue 1/2007

Login to get access

Abstract

Aims/hypothesis

Mitochondrial dysfunction and increased intramyocellular lipid (IMCL) content have both been implicated in the development of insulin resistance and type 2 diabetes mellitus, but the relative contributions of these two factors in the aetiology of diabetes are unknown. As obesity is an independent determinant of IMCL content, we examined mitochondrial function and IMCL content in overweight type 2 diabetes patients and BMI-matched normoglycaemic controls.

Methods

In 12 overweight type 2 diabetes patients and nine controls with similar BMI (29.4 ± 1 and 29.3 ± 0.9 kg/m2 respectively) in vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time (PCr half-time) immediately after exercise, using phosphorus-31 magnetic resonance spectroscopy. IMCL content was determined by proton magnetic resonance spectroscopic imaging and insulin sensitivity was measured with a hyperinsulinaemic–euglycaemic clamp.

Results

The PCr half-time was 45% longer in diabetic patients compared with controls (27.3 ± 3.5 vs 18.7 ± 0.9 s, p < 0.05), whereas IMCL content was similar (1.37 ± 0.30 vs 1.25 ± 0.22% of the water resonance), and insulin sensitivity was reduced in type 2 diabetes patients (26.0 ± 2.2 vs 18.9 ± 2.3 μmol min−1 kg−1, p < 0.05 [all mean ± SEM]). PCr half-time correlated positively with fasting plasma glucose (r 2 = 0.42, p < 0.01) and HbA1c (r 2 = 0.48, p < 0.05) in diabetic patients.

Conclusions/interpretation

The finding that in vivo mitochondrial function is decreased in type 2 diabetes patients compared with controls whereas IMCL content is similar suggests that low mitochondrial function is more strongly associated with insulin resistance and type 2 diabetes than a high IMCL content per se. Whether low mitochondrial function is a cause or consequence of the disease remains to be investigated.
Literature
1.
go back to reference Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRef Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRef
2.
go back to reference Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761PubMedCrossRef Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761PubMedCrossRef
3.
go back to reference He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823PubMed He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823PubMed
4.
go back to reference Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471PubMedCrossRef Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471PubMedCrossRef
5.
go back to reference Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRef Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRef
6.
go back to reference Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMed Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMed
8.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCrossRef Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCrossRef
9.
go back to reference Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRef Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRef
10.
go back to reference Thamer C, Machann J, Bachmann O et al (2003) Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88:1785–1791PubMedCrossRef Thamer C, Machann J, Bachmann O et al (2003) Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88:1785–1791PubMedCrossRef
11.
go back to reference Weiss R, Dufour S, Groszmann A et al (2003) Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 88:2014–2018PubMedCrossRef Weiss R, Dufour S, Groszmann A et al (2003) Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 88:2014–2018PubMedCrossRef
12.
go back to reference van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565PubMedCrossRef van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565PubMedCrossRef
13.
go back to reference Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMed Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMed
14.
go back to reference DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed
15.
go back to reference Naressi A, Couturier C, Devos JM et al (2001) Java-based graphical user interface for the MRUI quantitation package. Magma 12:141–152PubMed Naressi A, Couturier C, Devos JM et al (2001) Java-based graphical user interface for the MRUI quantitation package. Magma 12:141–152PubMed
16.
go back to reference Newcomer BR, Boska MD (1999) T1 measurements of 31P metabolites in resting and exercising human gastrocnemius/soleus muscle at 1.5 Tesla. Magn Reson Med 41:486–494PubMedCrossRef Newcomer BR, Boska MD (1999) T1 measurements of 31P metabolites in resting and exercising human gastrocnemius/soleus muscle at 1.5 Tesla. Magn Reson Med 41:486–494PubMedCrossRef
17.
go back to reference Schrauwen-Hinderling VB, Schrauwen P, Hesselink MK et al (2003) The increase in intramyocellular lipid content is a very early response to training. J Clin Endocrinol Metab 88:1610–1616PubMedCrossRef Schrauwen-Hinderling VB, Schrauwen P, Hesselink MK et al (2003) The increase in intramyocellular lipid content is a very early response to training. J Clin Endocrinol Metab 88:1610–1616PubMedCrossRef
18.
go back to reference Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122PubMedCrossRef Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122PubMedCrossRef
19.
go back to reference Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43PubMedCrossRef Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43PubMedCrossRef
20.
go back to reference Meyer RA, Foley JM (1996) Cellular processes integrating the metabolic responses to exercise. In: Rowell LB, Shepherd JT, eds. Handbook of physiology. American Physiological Society, New York, pp 841–869 Meyer RA, Foley JM (1996) Cellular processes integrating the metabolic responses to exercise. In: Rowell LB, Shepherd JT, eds. Handbook of physiology. American Physiological Society, New York, pp 841–869
21.
go back to reference Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63PubMed Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63PubMed
22.
go back to reference Sahlin K, Harris RC, Hultman E (1979) Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 39:551–558PubMed Sahlin K, Harris RC, Hultman E (1979) Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 39:551–558PubMed
23.
go back to reference Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6:66–72PubMed Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6:66–72PubMed
24.
go back to reference Arias-Mendoza F (2004) In vivo magnetic resonance spectroscopy in the evaluation of mitochondrial disorders. Mitochondrion 4:491–501PubMedCrossRef Arias-Mendoza F (2004) In vivo magnetic resonance spectroscopy in the evaluation of mitochondrial disorders. Mitochondrion 4:491–501PubMedCrossRef
25.
go back to reference Mattei JP, Bendahan D, Cozzone P (2004) P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56:9–14PubMed Mattei JP, Bendahan D, Cozzone P (2004) P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56:9–14PubMed
26.
go back to reference Larson-Meyer DE, Newcomer BR, Hunter GR, Joanisse DR, Weinsier RL, Bamman MM (2001) Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism. Muscle Nerve 24:1665–1676PubMedCrossRef Larson-Meyer DE, Newcomer BR, Hunter GR, Joanisse DR, Weinsier RL, Bamman MM (2001) Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism. Muscle Nerve 24:1665–1676PubMedCrossRef
27.
go back to reference De Feyter HM, Praet SS, van Loon LJ, Prompers JJ, Nicolay K (2006) A comparison of different methodologies to study skeletal muscle mitochondrial function in Type 2 diabetes patients. In: International Society of Magnetic Resonance in Medicine Seattle, p 483 (Abstract) De Feyter HM, Praet SS, van Loon LJ, Prompers JJ, Nicolay K (2006) A comparison of different methodologies to study skeletal muscle mitochondrial function in Type 2 diabetes patients. In: International Society of Magnetic Resonance in Medicine Seattle, p 483 (Abstract)
28.
go back to reference Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100:7996–8001PubMedCrossRef Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100:7996–8001PubMedCrossRef
29.
go back to reference Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS (2002) Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51:1913–1920PubMed Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS (2002) Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51:1913–1920PubMed
30.
go back to reference Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRef Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRef
31.
go back to reference Schrauwen P, Mensink M, Schaart G et al (2005) Reduced skeletal muscle UCP3 protein content in pre-diabetic subjects and type 2 diabetic patients: restoration by rosiglitazone treatment. J Clin Endocrinol Metab Schrauwen P, Mensink M, Schaart G et al (2005) Reduced skeletal muscle UCP3 protein content in pre-diabetic subjects and type 2 diabetic patients: restoration by rosiglitazone treatment. J Clin Endocrinol Metab
32.
go back to reference Taylor DJ, Crowe M, Bore PJ, Styles P, Arnold DL, Radda GK (1984) Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Gerontology 30:2–7PubMedCrossRef Taylor DJ, Crowe M, Bore PJ, Styles P, Arnold DL, Radda GK (1984) Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Gerontology 30:2–7PubMedCrossRef
Metadata
Title
Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects
Authors
V. B. Schrauwen-Hinderling
M. E. Kooi
M. K. C. Hesselink
J. A. L. Jeneson
W. H. Backes
C. J. A. van Echteld
J. M. A. van Engelshoven
M. Mensink
P. Schrauwen
Publication date
01-01-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 1/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0475-1

Other articles of this Issue 1/2007

Diabetologia 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine