Skip to main content
Top
Published in: Journal of Clinical Immunology 2/2017

Open Access 01-02-2017 | Brief Communication

Impact of Site of Care on Infection Rates Among Patients with Primary Immunodeficiency Diseases Receiving Intravenous Immunoglobulin Therapy

Authors: Richard L. Wasserman, Diane Ito, Yan Xiong, Xiaolan Ye, Patrick Bonnet, Josephine Li-McLeod

Published in: Journal of Clinical Immunology | Issue 2/2017

Login to get access

Abstract

Purpose

Patients with primary immunodeficiency diseases (PIDD) are at increased risk of infection and may require lifelong immunoglobulin G (IgG) replacement. Infection incidence rates were determined for patients with PIDD receiving intravenously administered IgG (IGIV) in a home or hospital outpatient infusion center (HOIC).

Methods

Data were extracted from a large, US-based, employer-sponsored administrative database. Patients were eligible for analysis if they had ≥1 inpatient or emergency room claim or ≥2 outpatient claims with a PIDD diagnosis between January 2002 and March 2013, 12 months of continuous health plan enrollment prior to index date (i.e., first IGIV infusion date), and 6 months of continuous IGIV at the same site of care after the index date. Incidences of pneumonia (bacterial or viral) and bronchitis (all types) within 7 days of IGIV infusion were retrospectively determined and compared between sites of care.

Results

A total of 1076 patients were included in the analysis; 51 and 49% received IGIV at home and at an HOIC, respectively. The event/patient-year of pneumonia was significantly lower in patients receiving IGIV at home compared to an outpatient hospital (0.102 vs. 0.216, p = 0.0071). Similarly, the event/patient-year of bronchitis was significantly lower among patients infusing at home compared to an HOIC (0.150 vs. 0.288, p < 0.0001).

Conclusions

PIDD patients experienced incidence rates for pneumonia and bronchitis that were lower for patients receiving home-based IGIV treatment versus HOIC-based IGIV treatment. The lower infection rates in the home setting suggest that infection risk may be an important factor in site of care selection.
Literature
1.
go back to reference Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.PubMedPubMedCentral Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.PubMedPubMedCentral
2.
go back to reference Gathmann B, Grimbacher B, Beauté J, Dudoit Y, Mahlaoui N, Fischer A, et al. The European internet-based patient and research database for primary immunodeficiencies: results 2006–2008. Clin Exp Immunol. 2009;1:3–11.CrossRef Gathmann B, Grimbacher B, Beauté J, Dudoit Y, Mahlaoui N, Fischer A, et al. The European internet-based patient and research database for primary immunodeficiencies: results 2006–2008. Clin Exp Immunol. 2009;1:3–11.CrossRef
3.
4.
go back to reference Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–S63.CrossRefPubMed Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–S63.CrossRefPubMed
5.
go back to reference Ballow M. Optimizing immunoglobulin treatment for patients with primary immunodeficiency disease to prevent pneumonia and infection incidence: review of the current data. Ann Allergy Asthma Immunol. 2013;111(6 Suppl):S2–5.CrossRefPubMed Ballow M. Optimizing immunoglobulin treatment for patients with primary immunodeficiency disease to prevent pneumonia and infection incidence: review of the current data. Ann Allergy Asthma Immunol. 2013;111(6 Suppl):S2–5.CrossRefPubMed
6.
go back to reference Berger M. Incidence of infection is inversely related to steady-state (trough) serum IgG level in studies of subcutaneous IgG in PIDD. J Clin Immunol. 2011;31:924–6.CrossRefPubMed Berger M. Incidence of infection is inversely related to steady-state (trough) serum IgG level in studies of subcutaneous IgG in PIDD. J Clin Immunol. 2011;31:924–6.CrossRefPubMed
7.
go back to reference Lucas M, Lee M, Lortan J, Lopez-Granados E, Misbah S, Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125:1354–60.CrossRefPubMed Lucas M, Lee M, Lortan J, Lopez-Granados E, Misbah S, Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125:1354–60.CrossRefPubMed
8.
go back to reference Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122(1):210–2.CrossRefPubMed Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122(1):210–2.CrossRefPubMed
9.
go back to reference Church JA, Leibl H, Stein MR, Melamed IR, Rubinstein A, Schneider LC, et al. Efficacy, safety and tolerability of a new 10% liquid intravenous immune globulin [IGIV 10%] in patients with primary immunodeficiency. J Clin Immunol. 2006;26:388–95.CrossRefPubMed Church JA, Leibl H, Stein MR, Melamed IR, Rubinstein A, Schneider LC, et al. Efficacy, safety and tolerability of a new 10% liquid intravenous immune globulin [IGIV 10%] in patients with primary immunodeficiency. J Clin Immunol. 2006;26:388–95.CrossRefPubMed
10.
go back to reference Wasserman RL, Melamed I, Kobrynski L, Strausbaugh SD, Stein MR, Sharkawy M, et al. Efficacy, safety, and pharmacokinetics of a 10% liquid immune globulin preparation (GAMMAGARD LIQUID, 10%) administered subcutaneously in subjects with primary immunodeficiency disease. J Clin Immunol. 2011;3:323–31.CrossRef Wasserman RL, Melamed I, Kobrynski L, Strausbaugh SD, Stein MR, Sharkawy M, et al. Efficacy, safety, and pharmacokinetics of a 10% liquid immune globulin preparation (GAMMAGARD LIQUID, 10%) administered subcutaneously in subjects with primary immunodeficiency disease. J Clin Immunol. 2011;3:323–31.CrossRef
11.
go back to reference Orange JS, Grossman WJ, Navickis RJ, Wilkes MM. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137:21–30.CrossRefPubMed Orange JS, Grossman WJ, Navickis RJ, Wilkes MM. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137:21–30.CrossRefPubMed
12.
go back to reference Gammagard. GAMMAGARD LIQUID [immune globulin infusion (human) 10%] prescribing information 2014. In Baxter Healthcare Corporation (Westlake Village, CA). Gammagard. GAMMAGARD LIQUID [immune globulin infusion (human) 10%] prescribing information 2014. In Baxter Healthcare Corporation (Westlake Village, CA).
13.
go back to reference Huang F, Feuille E, Cunningham-Rundles C. Home care use of intravenous and subcutaneous immunoglobulin for primary immunodeficiency in the United States. J Clin Immunol. 2013;33:49–54.CrossRefPubMed Huang F, Feuille E, Cunningham-Rundles C. Home care use of intravenous and subcutaneous immunoglobulin for primary immunodeficiency in the United States. J Clin Immunol. 2013;33:49–54.CrossRefPubMed
14.
go back to reference Wasserman RL, Melamed I, Stein MR, Gupta S, Puck J, Engl W, et al. Recombinant human hyaluronidase-facilitated subcutaneous infusion of human immunoglobulins for primary immunodeficiency. J Allergy Clin Immunol. 2012;130:951–7.CrossRefPubMed Wasserman RL, Melamed I, Stein MR, Gupta S, Puck J, Engl W, et al. Recombinant human hyaluronidase-facilitated subcutaneous infusion of human immunoglobulins for primary immunodeficiency. J Allergy Clin Immunol. 2012;130:951–7.CrossRefPubMed
15.
go back to reference Yong PL, Boyle J, Ballow M, Boyle M, Berger M, Bleesing J, et al. Use of intravenous immunoglobulin and adjunctive therapies in the treatment of primary immunodeficiencies: a working group report of and study by the Primary Immunodeficiency Committee of the American Academy of Allergy Asthma and Immunology. Clin Immunol. 2010;135:255–63.CrossRefPubMed Yong PL, Boyle J, Ballow M, Boyle M, Berger M, Bleesing J, et al. Use of intravenous immunoglobulin and adjunctive therapies in the treatment of primary immunodeficiencies: a working group report of and study by the Primary Immunodeficiency Committee of the American Academy of Allergy Asthma and Immunology. Clin Immunol. 2010;135:255–63.CrossRefPubMed
16.
go back to reference Gardulf A. Immunoglobulin treatment for primary antibody deficiencies: advantages of the subcutaneous route. BioDrugs. 2007;21:105–16.CrossRefPubMed Gardulf A. Immunoglobulin treatment for primary antibody deficiencies: advantages of the subcutaneous route. BioDrugs. 2007;21:105–16.CrossRefPubMed
18.
go back to reference Luthra R, Quimbo R, Iyer R, et al. An analysis of intravenous immunoglobin site of care: home versus outpatient hospital. Am J Pharmacy Benefits. 2014;6:9. Luthra R, Quimbo R, Iyer R, et al. An analysis of intravenous immunoglobin site of care: home versus outpatient hospital. Am J Pharmacy Benefits. 2014;6:9.
19.
go back to reference Ballow M, Berger M, Bonilla FA, Buckley RH, Cunningham-Rundles CH, Fireman P, et al. Pharmacokinetics and tolerability of a new intravenous immunoglobulin preparation, IGIV-C, 10% (Gamunex, 10%). Vox Sang. 2003;84:202–10.CrossRefPubMed Ballow M, Berger M, Bonilla FA, Buckley RH, Cunningham-Rundles CH, Fireman P, et al. Pharmacokinetics and tolerability of a new intravenous immunoglobulin preparation, IGIV-C, 10% (Gamunex, 10%). Vox Sang. 2003;84:202–10.CrossRefPubMed
20.
go back to reference Souayah N, Hasan A, Khan HM, Yacoub HA, Jafri M, et al. The safety profile of home infusion of intravenous immunoglobulin in patients with neuroimmunologic disorders. J Clin Neuromuscul Dis. 2011;12(Suppl 4):S1–S10.CrossRefPubMed Souayah N, Hasan A, Khan HM, Yacoub HA, Jafri M, et al. The safety profile of home infusion of intravenous immunoglobulin in patients with neuroimmunologic disorders. J Clin Neuromuscul Dis. 2011;12(Suppl 4):S1–S10.CrossRefPubMed
21.
go back to reference Menzin J, Sussman M, Munsell M, Zbrozek A. Economic impact of infections among patients with primary immunodeficiency disease receiving IVIG therapy. ClinicoEcon Outcomes Res. 2014;6:297–302.CrossRefPubMedPubMedCentral Menzin J, Sussman M, Munsell M, Zbrozek A. Economic impact of infections among patients with primary immunodeficiency disease receiving IVIG therapy. ClinicoEcon Outcomes Res. 2014;6:297–302.CrossRefPubMedPubMedCentral
22.
go back to reference Resnick ES, Bhatt P, Sidi P, Cunningham-Rundles C. Examining the use of ICD-9 diagnosis codes for primary immune deficiency diseases in New York State. J Clin Immunol. 2013;33:40–8.CrossRefPubMed Resnick ES, Bhatt P, Sidi P, Cunningham-Rundles C. Examining the use of ICD-9 diagnosis codes for primary immune deficiency diseases in New York State. J Clin Immunol. 2013;33:40–8.CrossRefPubMed
24.
go back to reference Joo EH, Rha SY, Ahn JB, Kang HY. Economic and patient-reported outcomes of outpatient home-based versus inpatient hospital-based chemotherapy for patients with colorectal cancer. Support Care Cancer. 2011;19:971–8.CrossRefPubMed Joo EH, Rha SY, Ahn JB, Kang HY. Economic and patient-reported outcomes of outpatient home-based versus inpatient hospital-based chemotherapy for patients with colorectal cancer. Support Care Cancer. 2011;19:971–8.CrossRefPubMed
25.
go back to reference Nicolay U, Kiessling P, Berger M, Gupta S, Yel L, Roifman CM, et al. Health-related quality of life and treatment satisfaction in North American patients with primary immunodeficiency diseases receiving subcutaneous IgG self-infusions at home. J Clin Immunol. 2006;26:65–72.CrossRefPubMed Nicolay U, Kiessling P, Berger M, Gupta S, Yel L, Roifman CM, et al. Health-related quality of life and treatment satisfaction in North American patients with primary immunodeficiency diseases receiving subcutaneous IgG self-infusions at home. J Clin Immunol. 2006;26:65–72.CrossRefPubMed
26.
go back to reference Hoffmann F, Grimbacher B, Thiel J, Peter HH, Belohradsky BH, Vivaglobin Study Group. Home-based subcutaneous immunoglobulin G replacement therapy under real-life conditions in children and adults with antibody deficiency. Eur J Med Res. 2010;15:238–45.PubMedPubMedCentral Hoffmann F, Grimbacher B, Thiel J, Peter HH, Belohradsky BH, Vivaglobin Study Group. Home-based subcutaneous immunoglobulin G replacement therapy under real-life conditions in children and adults with antibody deficiency. Eur J Med Res. 2010;15:238–45.PubMedPubMedCentral
27.
go back to reference Espanol T, Prevot J, Drabwell J, Sondhi S, Olding L. Improving current immunoglobulin therapy for patients with primary immunodeficiency: quality of life and views on treatment. Patient Prefer Adherence. 2014;8:621–9.CrossRefPubMedPubMedCentral Espanol T, Prevot J, Drabwell J, Sondhi S, Olding L. Improving current immunoglobulin therapy for patients with primary immunodeficiency: quality of life and views on treatment. Patient Prefer Adherence. 2014;8:621–9.CrossRefPubMedPubMedCentral
28.
go back to reference Mohamed AF, Kilambi V, Luo MP, Iyer RG, Li-McLeod JM. Patient and parent preferences for immunoglobulin treatments: a conjoint analysis. J Med Econ. 2012;15:1183–91.CrossRefPubMed Mohamed AF, Kilambi V, Luo MP, Iyer RG, Li-McLeod JM. Patient and parent preferences for immunoglobulin treatments: a conjoint analysis. J Med Econ. 2012;15:1183–91.CrossRefPubMed
Metadata
Title
Impact of Site of Care on Infection Rates Among Patients with Primary Immunodeficiency Diseases Receiving Intravenous Immunoglobulin Therapy
Authors
Richard L. Wasserman
Diane Ito
Yan Xiong
Xiaolan Ye
Patrick Bonnet
Josephine Li-McLeod
Publication date
01-02-2017
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 2/2017
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-017-0371-0

Other articles of this Issue 2/2017

Journal of Clinical Immunology 2/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.