Skip to main content
Top
Published in: Critical Care 4/2012

01-08-2012 | Letter

Impact of nystatin on Candida and the oral microbiome

Authors: Christopher D Hingston, Emma J Hingston, Matt P Wise

Published in: Critical Care | Issue 4/2012

Login to get access

Excerpt

In a recent issue of Critical Care, Giglio and colleagues [1] reported that oral nystatin reduced Candida colonization in a cohort of critically ill surgical patients, even when colonization was present at baseline. Colonization is a prerequisite for systemic infection, which is associated with significant morbidity and mortality. Although it is possible to stratify individuals at risk of invasive fungal disease, diagnosing this condition is complex, and the present study [1] represents a potential mechanism for reducing the burden of fungal infection. Candida albicans has a complicated relationship with potential bacterial respiratory pathogens and augments their growth in mixed biofilms [2, 3]. Pseudomonas aeruginosa is unable to bind yeast forms of C. albicans but forms a dense biofilm on C. albicans filaments [3]. This is relevant to clinical investigations in which respiratory tract colonization with C. albicans is associated with an increased risk of Pseudomonas ventilator-associated pneumonia (VAP) [4], which is reduced with antifungal treatment [5]. One impact of nystatin on other infections, such as VAP caused by Pseudomonas or Staphylococcus, or indeed on other indices, such as length of stay and mortality, was not measured [1]. One might anticipate that the benefit of nystatin treatment will extend beyond infections caused directly by Candida, but there is an important caveat. Nystatin generally is used as a suspension with high sucrose content (49.8% wt/vol), and growth of oral plaque is driven by sugars. Dental plaque becomes colonized with potential respiratory pathogens in critically ill patients and is important in the etiology of VAP. Future studies, therefore, should investigate the impact of nystatin on the oral microbiome, VAP, and mortality. …
Literature
1.
go back to reference Giglio M, Caggiano G, Dalfino L, Brienza N, Alicino I, Sgobio A, Favale A, Coretti C, Montagna MT, Bruno F, Puntillo F: Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012, 16: R57-10.1186/cc11300.PubMedPubMedCentralCrossRef Giglio M, Caggiano G, Dalfino L, Brienza N, Alicino I, Sgobio A, Favale A, Coretti C, Montagna MT, Bruno F, Puntillo F: Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012, 16: R57-10.1186/cc11300.PubMedPubMedCentralCrossRef
2.
go back to reference Harriott MM, Noverr MC: Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 2009, 53: 3914-3922. 10.1128/AAC.00657-09.PubMedPubMedCentralCrossRef Harriott MM, Noverr MC: Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 2009, 53: 3914-3922. 10.1128/AAC.00657-09.PubMedPubMedCentralCrossRef
3.
go back to reference Hogan DA, Kolter R: Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002, 296: 2229-2232. 10.1126/science.1070784.PubMedCrossRef Hogan DA, Kolter R: Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002, 296: 2229-2232. 10.1126/science.1070784.PubMedCrossRef
4.
go back to reference Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, Adrie C, Garrouste-Orgeas M, Cohen Y, Mourvillier B, Schlemmer B, Outcomerea Study Group: Candida colonization of the respiratory tract and subsequent pseudomonas ventilator associated pneumonia. Chest. 2006, 129: 110-117. 10.1378/chest.129.1.110.PubMedCrossRef Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, Adrie C, Garrouste-Orgeas M, Cohen Y, Mourvillier B, Schlemmer B, Outcomerea Study Group: Candida colonization of the respiratory tract and subsequent pseudomonas ventilator associated pneumonia. Chest. 2006, 129: 110-117. 10.1378/chest.129.1.110.PubMedCrossRef
5.
go back to reference Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, Favory R, Roussel-Delvallez M, Durocher A: Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med. 2007, 33: 137-142. 10.1007/s00134-006-0422-0.PubMedCrossRef Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, Favory R, Roussel-Delvallez M, Durocher A: Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med. 2007, 33: 137-142. 10.1007/s00134-006-0422-0.PubMedCrossRef
6.
go back to reference Ader F, Jawhara S, Nseir S, Kipnis E, Faure K, Vuotto F, Chemani C, Sendid B, Poulain D, Guery B: Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model. Crit Care. 2011, 15: R150-10.1186/cc10276.PubMedPubMedCentralCrossRef Ader F, Jawhara S, Nseir S, Kipnis E, Faure K, Vuotto F, Chemani C, Sendid B, Poulain D, Guery B: Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model. Crit Care. 2011, 15: R150-10.1186/cc10276.PubMedPubMedCentralCrossRef
Metadata
Title
Impact of nystatin on Candida and the oral microbiome
Authors
Christopher D Hingston
Emma J Hingston
Matt P Wise
Publication date
01-08-2012
Publisher
BioMed Central
Published in
Critical Care / Issue 4/2012
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc11360

Other articles of this Issue 4/2012

Critical Care 4/2012 Go to the issue