Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 8/2014

01-12-2014 | Original Paper

Impact of a vendor-specific motion-correction algorithm on image quality, interpretability, and diagnostic performance of daily routine coronary CT angiography: influence of heart rate on the effect of motion-correction

Authors: Heon Lee, Jeong A. Kim, Ji Sung Lee, Jon Suh, Sang Hyun Paik, Jai Soung Park

Published in: The International Journal of Cardiovascular Imaging | Issue 8/2014

Login to get access

Abstract

To investigate the impact of a vendor-specific motion-correction algorithm on morphological assessment of coronary arteries using coronary CT angiography (cCTA) and to evaluate the influence of heart rate (HR) on the motion-correction effect of this algorithm. Eighty-four patients (mean age 56.3 ± 11.4 years; 53 males) were divided into two groups with a HR of ≥65 and <65 bpm during cCTA, respectively. Images were assigned quality scores (graded 1–4) on coronary segments. Interpretability was defined as a grade >1. Catheter angiography was used to determine the diagnostic accuracy of cCTA for detecting significant stenosis (≥50 %). We compared the image quality, interpretability and diagnostic accuracy between the standard and motion-correction reconstructions in both groups. The motion-correction reconstructions showed significantly (p < 0.05) higher image quality in the proximal and middle right coronary artery (RCA) in the low HR group (57.2 ± 5.0 bpm; n = 51) and proximal-to-distal RCA, posterior descending artery, and proximal and distal left circumflex artery in the high HR group (71.1 ± 4.6 bpm; n = 33). The per-segment interpretability was significantly higher using motion-correction algorithm in the middle RCA in the low HR group and in the proximal and middle RCA in high HR group. Overall, the image quality and interpretability were improved using motion-correction reconstructions in both groups (p < 0.05). Motion-correction reconstruction demonstrated higher (p < 0.05) diagnostic accuracy in 25 patients from both groups. Use of the motion-correction algorithm improves the overall image quality and interpretability of cCTA in both groups. However, it may be more beneficial to the patients with a higher HR.
Literature
1.
2.
3.
go back to reference Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385PubMedCrossRef Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385PubMedCrossRef
4.
go back to reference Bastarrika G, Lee YS, Huda W et al (2009) CT of coronary artery disease. Radiology 253(2):317–338PubMedCrossRef Bastarrika G, Lee YS, Huda W et al (2009) CT of coronary artery disease. Radiology 253(2):317–338PubMedCrossRef
5.
go back to reference Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336PubMedCrossRef Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336PubMedCrossRef
6.
go back to reference Dewey M, Teige F, Laule M et al (2007) Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol 17(11):2829–2837PubMedCrossRef Dewey M, Teige F, Laule M et al (2007) Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol 17(11):2829–2837PubMedCrossRef
7.
go back to reference Seifarth H, Wienbeck S, Pusken M et al (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189(6):1317–1323PubMedCrossRef Seifarth H, Wienbeck S, Pusken M et al (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189(6):1317–1323PubMedCrossRef
8.
go back to reference Chung CS, Karamanoglu M, Kovacs SJ (2004) Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol 287(5):H2003–H2008PubMedCrossRef Chung CS, Karamanoglu M, Kovacs SJ (2004) Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol 287(5):H2003–H2008PubMedCrossRef
9.
go back to reference Abbara S, Arbab-Zadeh A, Callister TQ et al (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 3(3):190–204PubMedCrossRef Abbara S, Arbab-Zadeh A, Callister TQ et al (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 3(3):190–204PubMedCrossRef
10.
go back to reference Scharf M, Bink R, May MS et al (2011) High-pitch thoracic CT with simultaneous assessment of coronary arteries: effect of heart rate and heart rate variability on image quality and diagnostic accuracy. JACC Cardiovasc Imaging 4(6):602–609PubMedCrossRef Scharf M, Bink R, May MS et al (2011) High-pitch thoracic CT with simultaneous assessment of coronary arteries: effect of heart rate and heart rate variability on image quality and diagnostic accuracy. JACC Cardiovasc Imaging 4(6):602–609PubMedCrossRef
11.
go back to reference Achenbach S, Ropers U, Kuettner A et al (2008) Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging 1(2):177–186PubMedCrossRef Achenbach S, Ropers U, Kuettner A et al (2008) Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging 1(2):177–186PubMedCrossRef
12.
go back to reference Schnapauff D, Teige F, Hamm B et al (2009) Comparison between the image quality of multisegment and halfscan reconstructions of non-invasive CT coronary angiography. Br J Radiol 82(984):969–975PubMedCentralPubMedCrossRef Schnapauff D, Teige F, Hamm B et al (2009) Comparison between the image quality of multisegment and halfscan reconstructions of non-invasive CT coronary angiography. Br J Radiol 82(984):969–975PubMedCentralPubMedCrossRef
13.
go back to reference Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189(3):567–573PubMedCrossRef Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189(3):567–573PubMedCrossRef
14.
go back to reference Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39(4):223–229PubMedCrossRef Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39(4):223–229PubMedCrossRef
15.
go back to reference Leipsic J, Labounty TM, Hague CJ et al (2012) Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr 6(3):164–171PubMedCrossRef Leipsic J, Labounty TM, Hague CJ et al (2012) Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr 6(3):164–171PubMedCrossRef
16.
go back to reference Delhaye D, Remy-Jardin M, Rozel C et al (2007) Coronary artery imaging during preoperative CT staging: preliminary experience with 64-slice multidetector CT in 99 consecutive patients. Eur Radiol 17(3):591–602PubMedCrossRef Delhaye D, Remy-Jardin M, Rozel C et al (2007) Coronary artery imaging during preoperative CT staging: preliminary experience with 64-slice multidetector CT in 99 consecutive patients. Eur Radiol 17(3):591–602PubMedCrossRef
17.
go back to reference Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254(3):698–706PubMedCentralPubMedCrossRef Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254(3):698–706PubMedCentralPubMedCrossRef
18.
go back to reference Ding Z, Friedman MH (2000) Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. Int J Card Imaging 16(5):331–346PubMedCrossRef Ding Z, Friedman MH (2000) Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. Int J Card Imaging 16(5):331–346PubMedCrossRef
19.
go back to reference Husmann L, Leschka S, Desbiolles L et al (2007) Coronary artery motion and cardiac phases: dependency on heart rate—implications for CT image reconstruction. Radiology 245(2):567–576PubMedCrossRef Husmann L, Leschka S, Desbiolles L et al (2007) Coronary artery motion and cardiac phases: dependency on heart rate—implications for CT image reconstruction. Radiology 245(2):567–576PubMedCrossRef
20.
go back to reference Min JK, Arsanjani R, Kurabayashi S et al (2013) Rationale and design of the ViCTORY (Validation of an Intracycle CT Motion CORrection Algorithm for Diagnostic AccuracY) trial. J Cardiovasc Comput Tomogr 7(3):200–206PubMedCrossRef Min JK, Arsanjani R, Kurabayashi S et al (2013) Rationale and design of the ViCTORY (Validation of an Intracycle CT Motion CORrection Algorithm for Diagnostic AccuracY) trial. J Cardiovasc Comput Tomogr 7(3):200–206PubMedCrossRef
21.
go back to reference Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 4(6):407.e1– 407.e33 Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 4(6):407.e1– 407.e33
Metadata
Title
Impact of a vendor-specific motion-correction algorithm on image quality, interpretability, and diagnostic performance of daily routine coronary CT angiography: influence of heart rate on the effect of motion-correction
Authors
Heon Lee
Jeong A. Kim
Ji Sung Lee
Jon Suh
Sang Hyun Paik
Jai Soung Park
Publication date
01-12-2014
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 8/2014
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-014-0499-4

Other articles of this Issue 8/2014

The International Journal of Cardiovascular Imaging 8/2014 Go to the issue