Skip to main content
Top
Published in: Cancer Microenvironment 2/2013

01-08-2013 | Original Paper

Immunosuppressive Mechanisms of Regulatory Dendritic Cells in Cancer

Authors: Galina V. Shurin, Yang Ma, Michael R. Shurin

Published in: Cancer Microenvironment | Issue 2/2013

Login to get access

Abstract

Three major functional subsets of dendritic cells (DCs) have been described in the tumor microenvironment in patients with cancer and tumor-bearing animals: (i) conventional DCs with intact antigen-presenting capabilities, (ii) functionally defective DCs with decreased motility and low ability to uptake, process and present antigens or produce cytokines and (iii) regulatory DCs with high capacity to suppress T cell proliferation, induce differentiation of regulatory T cells or support immune tolerance. Phenotypic characteristics of regulatory DCs (regDCs), as well as the mechanisms of T cell inhibition, vary in different experimental conditions and environments, suggesting high level of their plasticity and probably different origin. Although new data demonstrate that regDCs may play an important role at early stages of tumor development, functional differences and clinical significance of emergence of different myeloid regulatory cells (MDSCs, regDCs, M2 macrophages, N2 neutrophils, mast cells) in cancer remain to be determined.
Literature
1.
go back to reference Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor associated regulatory dendritic cells. Seminars in cancer biology 22(4):298–306PubMedCrossRef Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor associated regulatory dendritic cells. Seminars in cancer biology 22(4):298–306PubMedCrossRef
2.
go back to reference Shurin MR, Naiditch H, Zhong H, Shurin GV (2011) Regulatory dendritic cells: New targets for cancer immunotherapy. Cancer biology & therapy 11(11):988–992CrossRef Shurin MR, Naiditch H, Zhong H, Shurin GV (2011) Regulatory dendritic cells: New targets for cancer immunotherapy. Cancer biology & therapy 11(11):988–992CrossRef
3.
go back to reference Adler HS, Steinbrink K (2007) Tolerogenic dendritic cells in health and disease: Friend and foe! Eur J Dermatol 17(6):476–491PubMed Adler HS, Steinbrink K (2007) Tolerogenic dendritic cells in health and disease: Friend and foe! Eur J Dermatol 17(6):476–491PubMed
4.
go back to reference Akbari O, Umetsu DT (2005) Role of regulatory dendritic cells in allergy and asthma. Current allergy and asthma reports 5(1):56–61PubMedCrossRef Akbari O, Umetsu DT (2005) Role of regulatory dendritic cells in allergy and asthma. Current allergy and asthma reports 5(1):56–61PubMedCrossRef
5.
go back to reference Griffiths KL, O’Neill HC (2008) Dendritic cells as immune regulators: The mouse model. Journal of cellular and molecular medicine 12(5B):1909–1914PubMedCrossRef Griffiths KL, O’Neill HC (2008) Dendritic cells as immune regulators: The mouse model. Journal of cellular and molecular medicine 12(5B):1909–1914PubMedCrossRef
6.
go back to reference Ilarregui JM, Rabinovich GA (2010) Tolerogenic dendritic cells in the control of autoimmune neuroinflammation: An emerging role of protein-glycan interactions. Neuroimmunomodulation 17(3):157–160PubMedCrossRef Ilarregui JM, Rabinovich GA (2010) Tolerogenic dendritic cells in the control of autoimmune neuroinflammation: An emerging role of protein-glycan interactions. Neuroimmunomodulation 17(3):157–160PubMedCrossRef
7.
go back to reference Lebre MC, Tak PP (2009) Dendritic cells in rheumatoid arthritis: Which subset should be used as a tool to induce tolerance? Human immunology 70(5):321–324PubMedCrossRef Lebre MC, Tak PP (2009) Dendritic cells in rheumatoid arthritis: Which subset should be used as a tool to induce tolerance? Human immunology 70(5):321–324PubMedCrossRef
8.
go back to reference Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Sun H, Suzuki M, Vladau C, Huang X, Xia X, Zhong R, Garcia B, Min WP (2008) Tolerogenic dendritic cells transferring hyporesponsiveness and synergizing t regulatory cells in transplant tolerance. International immunology 20(2):285–293PubMedCrossRef Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Sun H, Suzuki M, Vladau C, Huang X, Xia X, Zhong R, Garcia B, Min WP (2008) Tolerogenic dendritic cells transferring hyporesponsiveness and synergizing t regulatory cells in transplant tolerance. International immunology 20(2):285–293PubMedCrossRef
9.
go back to reference Poncini CV, Gimenez G, Pontillo CA, Alba-Soto CD, de Isola EL, Piazzon I, Cappa SM (2010) Central role of extracellular signal-regulated kinase and toll-like receptor 4 in il-10 production in regulatory dendritic cells induced by trypanosoma cruzi. Molecular immunology 47(11–12):1981–1988PubMedCrossRef Poncini CV, Gimenez G, Pontillo CA, Alba-Soto CD, de Isola EL, Piazzon I, Cappa SM (2010) Central role of extracellular signal-regulated kinase and toll-like receptor 4 in il-10 production in regulatory dendritic cells induced by trypanosoma cruzi. Molecular immunology 47(11–12):1981–1988PubMedCrossRef
10.
go back to reference Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma International journal of cancer. Journal international du cancer 73(3):309–316PubMedCrossRef Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma International journal of cancer. Journal international du cancer 73(3):309–316PubMedCrossRef
11.
go back to reference Xu X, Yi H, Guo Z, Qian C, Xia S, Yao Y, Cao X (2012) Splenic stroma-educated regulatory dendritic cells induce apoptosis of activated cd4 t cells via fas ligand-enhanced ifn-gamma and nitric oxide. J Immunol 188(3):1168–1177PubMedCrossRef Xu X, Yi H, Guo Z, Qian C, Xia S, Yao Y, Cao X (2012) Splenic stroma-educated regulatory dendritic cells induce apoptosis of activated cd4 t cells via fas ligand-enhanced ifn-gamma and nitric oxide. J Immunol 188(3):1168–1177PubMedCrossRef
12.
go back to reference Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nature immunology 5(11):1124–1133PubMedCrossRef Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nature immunology 5(11):1124–1133PubMedCrossRef
13.
go back to reference Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated cd11bhighialow regulatory dendritic cells suppress t cell response through arginase i. J Immunol 182(10):6207–6216PubMedCrossRef Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated cd11bhighialow regulatory dendritic cells suppress t cell response through arginase i. J Immunol 182(10):6207–6216PubMedCrossRef
14.
go back to reference Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit cd8+ t cell function via l-arginine metabolism. Cancer research 69(7):3086–3094PubMedCrossRef Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit cd8+ t cell function via l-arginine metabolism. Cancer research 69(7):3086–3094PubMedCrossRef
15.
go back to reference Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L (2005) Tumor cells convert immature myeloid dendritic cells into tgf-beta-secreting cells inducing cd4+cd25+ regulatory t cell proliferation. The Journal of experimental medicine 202(7):919–929PubMedCrossRef Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L (2005) Tumor cells convert immature myeloid dendritic cells into tgf-beta-secreting cells inducing cd4+cd25+ regulatory t cell proliferation. The Journal of experimental medicine 202(7):919–929PubMedCrossRef
16.
go back to reference Kim R, Emi M, Tanabe K (2006) Functional roles of immature dendritic cells in impaired immunity of solid tumour and their targeted strategies for provoking tumour immunity. Clinical and experimental immunology 146(2):189–196PubMedCrossRef Kim R, Emi M, Tanabe K (2006) Functional roles of immature dendritic cells in impaired immunity of solid tumour and their targeted strategies for provoking tumour immunity. Clinical and experimental immunology 146(2):189–196PubMedCrossRef
17.
go back to reference Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce tgf-beta 1 under the influence of lung carcinoma cells and prime the differentiation of cd4+cd25+foxp3+ regulatory t cells. J Immunol 182(5):2795–2807PubMedCrossRef Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce tgf-beta 1 under the influence of lung carcinoma cells and prime the differentiation of cd4+cd25+foxp3+ regulatory t cells. J Immunol 182(5):2795–2807PubMedCrossRef
18.
go back to reference Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: A role for dendritic cell-mediated tolerization of t cells. Cancer immunology, immunotherapy : CII 61(2):289–293PubMedCrossRef Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: A role for dendritic cell-mediated tolerization of t cells. Cancer immunology, immunotherapy : CII 61(2):289–293PubMedCrossRef
19.
go back to reference Shurin GV, Ouellette CE, Shurin MR (2012) Regulatory dendritic cells in the tumor immunoenvironment. Cancer immunology, immunotherapy : CII 61(2):223–230PubMedCrossRef Shurin GV, Ouellette CE, Shurin MR (2012) Regulatory dendritic cells in the tumor immunoenvironment. Cancer immunology, immunotherapy : CII 61(2):223–230PubMedCrossRef
20.
go back to reference Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal cd103+ dendritic cells: Master regulators of tolerance? Trends in immunology 32(9):412–419PubMedCrossRef Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal cd103+ dendritic cells: Master regulators of tolerance? Trends in immunology 32(9):412–419PubMedCrossRef
21.
go back to reference Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N (2003) High expression of ilt3 and ilt4 is a general feature of tolerogenic dendritic cells. Transplant immunology 11(3–4):245–258PubMedCrossRef Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N (2003) High expression of ilt3 and ilt4 is a general feature of tolerogenic dendritic cells. Transplant immunology 11(3–4):245–258PubMedCrossRef
22.
go back to reference Dai H, Zhu H, Lei P, Yagita H, Liu J, Wen X, Zhou W, Gong F, Shen G, Fang M (2009) Programmed death-1 signaling is essential for the skin allograft protection by alternatively activated dendritic cell infusion in mice. Transplantation 88(7):864–873PubMedCrossRef Dai H, Zhu H, Lei P, Yagita H, Liu J, Wen X, Zhou W, Gong F, Shen G, Fang M (2009) Programmed death-1 signaling is essential for the skin allograft protection by alternatively activated dendritic cell infusion in mice. Transplantation 88(7):864–873PubMedCrossRef
23.
go back to reference Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, Shawler T, Whitacre CC (2011) Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity J Immunol 186(6):3346–3355 Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, Shawler T, Whitacre CC (2011) Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity J Immunol 186(6):3346–3355
24.
go back to reference Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, Wang XN, Isaacs JD, Hilkens CM (2008) Differential regulation of naive and memory cd4+ t cells by alternatively activated dendritic cells. Journal of leukocyte biology 84(1):124–133PubMedCrossRef Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, Wang XN, Isaacs JD, Hilkens CM (2008) Differential regulation of naive and memory cd4+ t cells by alternatively activated dendritic cells. Journal of leukocyte biology 84(1):124–133PubMedCrossRef
25.
go back to reference Qian C, Cao X (2012) Naturally occurring cd1c + human regulatory dendritic cells: Immunoregulators that are expanded in response to e. Coli infection European journal of immunology 42(6):1388–1392CrossRef Qian C, Cao X (2012) Naturally occurring cd1c + human regulatory dendritic cells: Immunoregulators that are expanded in response to e. Coli infection European journal of immunology 42(6):1388–1392CrossRef
26.
go back to reference Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC (2008) Ccr9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nature immunology 9(11):1253–1260PubMedCrossRef Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC (2008) Ccr9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nature immunology 9(11):1253–1260PubMedCrossRef
27.
go back to reference Watkins SK, Hurwitz AA (2012) Foxo3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 1(2):252–254PubMedCrossRef Watkins SK, Hurwitz AA (2012) Foxo3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 1(2):252–254PubMedCrossRef
28.
go back to reference Zhao ZG, Xu W, Sun L, Li WM, Li QB, Zou P (2012) The characteristics and immunoregulatory functions of regulatory dendritic cells induced by mesenchymal stem cells derived from bone marrow of patient with chronic myeloid leukaemia. Eur J Cancer 48(12):1884–1895PubMedCrossRef Zhao ZG, Xu W, Sun L, Li WM, Li QB, Zou P (2012) The characteristics and immunoregulatory functions of regulatory dendritic cells induced by mesenchymal stem cells derived from bone marrow of patient with chronic myeloid leukaemia. Eur J Cancer 48(12):1884–1895PubMedCrossRef
29.
go back to reference Huang H, Dawicki W, Zhang X, Town J, Gordon JR (2010) Tolerogenic dendritic cells induce cd4 + cd25hifoxp3+ regulatory t cell differentiation from cd4 + cd25-/lofoxp3- effector t cells. J Immunol 185(9):5003–5010PubMedCrossRef Huang H, Dawicki W, Zhang X, Town J, Gordon JR (2010) Tolerogenic dendritic cells induce cd4 + cd25hifoxp3+ regulatory t cell differentiation from cd4 + cd25-/lofoxp3- effector t cells. J Immunol 185(9):5003–5010PubMedCrossRef
30.
go back to reference Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P (2003) T cell apoptosis by kynurenines Advances in experimental medicine and biology 527(183-190 Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P (2003) T cell apoptosis by kynurenines Advances in experimental medicine and biology 527(183-190
31.
go back to reference Mellor AL, Munn DH (2004) Ido expression by dendritic cells: Tolerance and tryptophan catabolism Nature reviews 4(10):762–774 Mellor AL, Munn DH (2004) Ido expression by dendritic cells: Tolerance and tryptophan catabolism Nature reviews 4(10):762–774
32.
go back to reference Muller AJ, Prendergast GC (2007) Indoleamine 2,3-dioxygenase in immune suppression and cancer. Current cancer drug targets 7(1):31–40PubMedCrossRef Muller AJ, Prendergast GC (2007) Indoleamine 2,3-dioxygenase in immune suppression and cancer. Current cancer drug targets 7(1):31–40PubMedCrossRef
33.
go back to reference Keir ME, Francisco LM, Sharpe AH (2007) Pd-1 and its ligands in t-cell immunity. Current opinion in immunology 19(3):309–314PubMedCrossRef Keir ME, Francisco LM, Sharpe AH (2007) Pd-1 and its ligands in t-cell immunity. Current opinion in immunology 19(3):309–314PubMedCrossRef
34.
go back to reference Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) Pd-l1-deficient mice show that pd-l1 on t cells, antigen-presenting cells, and host tissues negatively regulates t cells. Proceedings of the National Academy of Sciences of the United States of America 101(29):10691–10696PubMedCrossRef Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) Pd-l1-deficient mice show that pd-l1 on t cells, antigen-presenting cells, and host tissues negatively regulates t cells. Proceedings of the National Academy of Sciences of the United States of America 101(29):10691–10696PubMedCrossRef
35.
go back to reference Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L (2008) Tumor-educated tolerogenic dendritic cells induce cd3epsilon down-regulation and apoptosis of t cells through oxygen-dependent pathways. J Immunol 181(5):3089–3098PubMed Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L (2008) Tumor-educated tolerogenic dendritic cells induce cd3epsilon down-regulation and apoptosis of t cells through oxygen-dependent pathways. J Immunol 181(5):3089–3098PubMed
36.
go back to reference Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of tgf-beta targeted cancer therapy. International journal of biological sciences 8(7):964–978PubMedCrossRef Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of tgf-beta targeted cancer therapy. International journal of biological sciences 8(7):964–978PubMedCrossRef
37.
go back to reference Gigante M, Gesualdo L, Ranieri E (2012) Tgf-beta: A master switch in tumor immunity. Current pharmaceutical design 18(27):4126–4134PubMedCrossRef Gigante M, Gesualdo L, Ranieri E (2012) Tgf-beta: A master switch in tumor immunity. Current pharmaceutical design 18(27):4126–4134PubMedCrossRef
38.
go back to reference Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors Clinical & developmental immunology 2012(948098. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors Clinical & developmental immunology 2012(948098.
39.
go back to reference Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by tgfbeta. Nature reviews 10(8):554–567PubMedCrossRef Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by tgfbeta. Nature reviews 10(8):554–567PubMedCrossRef
40.
go back to reference Maeda H, Shiraishi A (1996) Tgf-beta contributes to the shift toward th2-type responses through direct and il-10-mediated pathways in tumor-bearing mice. J Immunol 156(1):73–78PubMed Maeda H, Shiraishi A (1996) Tgf-beta contributes to the shift toward th2-type responses through direct and il-10-mediated pathways in tumor-bearing mice. J Immunol 156(1):73–78PubMed
41.
go back to reference Weller M, Constam DB, Malipiero U, Fontana A (1994) Transforming growth factor-beta 2 induces apoptosis of murine t cell clones without down-regulating bcl-2 mrna expression. European journal of immunology 24(6):1293–1300PubMedCrossRef Weller M, Constam DB, Malipiero U, Fontana A (1994) Transforming growth factor-beta 2 induces apoptosis of murine t cell clones without down-regulating bcl-2 mrna expression. European journal of immunology 24(6):1293–1300PubMedCrossRef
42.
go back to reference Thomas DA, Massague J (2005) Tgf-beta directly targets cytotoxic t cell functions during tumor evasion of immune surveillance. Cancer cell 8(5):369–380PubMedCrossRef Thomas DA, Massague J (2005) Tgf-beta directly targets cytotoxic t cell functions during tumor evasion of immune surveillance. Cancer cell 8(5):369–380PubMedCrossRef
43.
go back to reference Becker C, Fantini MC, Neurath MF (2006) Tgf-beta as a t cell regulator in colitis and colon cancer. Cytokine & growth factor reviews 17(1–2):97–106CrossRef Becker C, Fantini MC, Neurath MF (2006) Tgf-beta as a t cell regulator in colitis and colon cancer. Cytokine & growth factor reviews 17(1–2):97–106CrossRef
44.
go back to reference Saas P, Perruche S (2012) Functions of tgf-beta-exposed plasmacytoid dendritic cells. Critical reviews in immunology 32(6):529–553PubMedCrossRef Saas P, Perruche S (2012) Functions of tgf-beta-exposed plasmacytoid dendritic cells. Critical reviews in immunology 32(6):529–553PubMedCrossRef
45.
go back to reference Weber F, Byrne SN, Le S, Brown DA, Breit SN, Scolyer RA, Halliday GM (2005) Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer immunology, immunotherapy : CII 54(9):898–906PubMedCrossRef Weber F, Byrne SN, Le S, Brown DA, Breit SN, Scolyer RA, Halliday GM (2005) Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer immunology, immunotherapy : CII 54(9):898–906PubMedCrossRef
46.
go back to reference Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, Imai K, Hirokawa M, Ogawa J (2006) Tumor-derived tgfbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176(9):5637–5643PubMed Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, Imai K, Hirokawa M, Ogawa J (2006) Tumor-derived tgfbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176(9):5637–5643PubMed
47.
go back to reference de Waal MR, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (il-10) and viral il-10 strongly reduce antigen-specific human t cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class ii major histocompatibility complex expression. The Journal of experimental medicine 174(4):915–924CrossRef de Waal MR, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (il-10) and viral il-10 strongly reduce antigen-specific human t cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class ii major histocompatibility complex expression. The Journal of experimental medicine 174(4):915–924CrossRef
48.
go back to reference Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) Il-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822PubMed Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) Il-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822PubMed
49.
go back to reference Willems F, Marchant A, Delville JP, Gerard C, Delvaux A, Velu T, de Boer M, Goldman M (1994) Interleukin-10 inhibits b7 and intercellular adhesion molecule-1 expression on human monocytes. European journal of immunology 24(4):1007–1009PubMedCrossRef Willems F, Marchant A, Delville JP, Gerard C, Delvaux A, Velu T, de Boer M, Goldman M (1994) Interleukin-10 inhibits b7 and intercellular adhesion molecule-1 expression on human monocytes. European journal of immunology 24(4):1007–1009PubMedCrossRef
50.
go back to reference Taga K, Tosato G (1992) Il-10 inhibits human t cell proliferation and il-2 production. J Immunol 148(4):1143–1148PubMed Taga K, Tosato G (1992) Il-10 inhibits human t cell proliferation and il-2 production. J Immunol 148(4):1143–1148PubMed
51.
go back to reference Akdis CA, Joss A, Akdis M, Faith A, Blaser K (2000) A molecular basis for t cell suppression by il-10: Cd28-associated il-10 receptor inhibits cd28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. Faseb J 14(12):1666–1668PubMed Akdis CA, Joss A, Akdis M, Faith A, Blaser K (2000) A molecular basis for t cell suppression by il-10: Cd28-associated il-10 receptor inhibits cd28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. Faseb J 14(12):1666–1668PubMed
52.
go back to reference Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA (2007) Il-10 inhibits cd28 and icos costimulations of t cells via src homology 2 domain-containing protein tyrosine phosphatase 1. The Journal of allergy and clinical immunology 120(1):76–83PubMedCrossRef Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA (2007) Il-10 inhibits cd28 and icos costimulations of t cells via src homology 2 domain-containing protein tyrosine phosphatase 1. The Journal of allergy and clinical immunology 120(1):76–83PubMedCrossRef
53.
go back to reference Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H (2013) Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells Frontiers in immunology 4(82. Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H (2013) Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells Frontiers in immunology 4(82.
54.
go back to reference Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM, ten Brinke A (2012) Il-10-generated tolerogenic dendritic cells are optimal for functional regulatory t cell induction–a comparative study of human clinical-applicable dc. Clin Immunol 142(3):332–342PubMedCrossRef Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM, ten Brinke A (2012) Il-10-generated tolerogenic dendritic cells are optimal for functional regulatory t cell induction–a comparative study of human clinical-applicable dc. Clin Immunol 142(3):332–342PubMedCrossRef
55.
go back to reference Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77(2):89–99PubMedCrossRef Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77(2):89–99PubMedCrossRef
56.
go back to reference Velten FW, Duperrier K, Bohlender J, Metharom P, Goerdt S (2004) A gene signature of inhibitory mhc receptors identifies a bdca3(+) subset of il-10-induced dendritic cells with reduced allostimulatory capacity in vitro. European journal of immunology 34(10):2800–2811PubMedCrossRef Velten FW, Duperrier K, Bohlender J, Metharom P, Goerdt S (2004) A gene signature of inhibitory mhc receptors identifies a bdca3(+) subset of il-10-induced dendritic cells with reduced allostimulatory capacity in vitro. European journal of immunology 34(10):2800–2811PubMedCrossRef
57.
go back to reference Kubsch S, Graulich E, Knop J, Steinbrink K (2003) Suppressor activity of anergic t cells induced by il-10-treated human dendritic cells: Association with il-2- and ctla-4-dependent g1 arrest of the cell cycle regulated by p27kip1. European journal of immunology 33(7):1988–1997PubMedCrossRef Kubsch S, Graulich E, Knop J, Steinbrink K (2003) Suppressor activity of anergic t cells induced by il-10-treated human dendritic cells: Association with il-2- and ctla-4-dependent g1 arrest of the cell cycle regulated by p27kip1. European journal of immunology 33(7):1988–1997PubMedCrossRef
58.
go back to reference Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by il-10-treated dendritic cells. J Immunol 159(10):4772–4780PubMed Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by il-10-treated dendritic cells. J Immunol 159(10):4772–4780PubMed
59.
go back to reference Gaspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, Marches F, Banchereau J, Palucka A (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting cd4+ t cells that facilitate tumor development. The Journal of experimental medicine 204(5):1037–1047CrossRef Gaspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, Marches F, Banchereau J, Palucka A (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting cd4+ t cells that facilitate tumor development. The Journal of experimental medicine 204(5):1037–1047CrossRef
60.
go back to reference Azzaoui I, Yahia SA, Chang Y, Vorng H, Morales O, Fan Y, Delhem N, Ple C, Tonnel AB, Wallaert B, Tsicopoulos A (2011) Ccl18 differentiates dendritic cells in tolerogenic cells able to prime regulatory t cells in healthy subjects. Blood 118(13):3549–3558PubMedCrossRef Azzaoui I, Yahia SA, Chang Y, Vorng H, Morales O, Fan Y, Delhem N, Ple C, Tonnel AB, Wallaert B, Tsicopoulos A (2011) Ccl18 differentiates dendritic cells in tolerogenic cells able to prime regulatory t cells in healthy subjects. Blood 118(13):3549–3558PubMedCrossRef
61.
go back to reference Mou HB, Lin MF, Huang H, Cai Z (2011) Transforming growth factor-beta1 modulates lipopolysaccharide-induced cytokine/chemokine production and inhibits nuclear factor-kappab, extracellular signal-regulated kinases and p38 activation in dendritic cells in mice. Transplant Proc 43(5):2049–2052PubMedCrossRef Mou HB, Lin MF, Huang H, Cai Z (2011) Transforming growth factor-beta1 modulates lipopolysaccharide-induced cytokine/chemokine production and inhibits nuclear factor-kappab, extracellular signal-regulated kinases and p38 activation in dendritic cells in mice. Transplant Proc 43(5):2049–2052PubMedCrossRef
62.
go back to reference Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: The roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology 16(1):38–52PubMedCrossRef Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: The roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology 16(1):38–52PubMedCrossRef
63.
go back to reference Diao J, Zhao J, Winter E, Cattral MS (2010) Recruitment and differentiation of conventional dendritic cell precursors in tumors. J Immunol 184(3):1261–1267PubMedCrossRef Diao J, Zhao J, Winter E, Cattral MS (2010) Recruitment and differentiation of conventional dendritic cell precursors in tumors. J Immunol 184(3):1261–1267PubMedCrossRef
64.
go back to reference Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M (2012) Cell-extrinsic effects of tumor er stress imprint myeloid dendritic cells and impair cd8(+) t cell priming. PloS one 7(12):e51845PubMedCrossRef Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M (2012) Cell-extrinsic effects of tumor er stress imprint myeloid dendritic cells and impair cd8(+) t cell priming. PloS one 7(12):e51845PubMedCrossRef
65.
go back to reference Bak SP, Alonso A, Turk MJ, Berwin B (2008) Murine ovarian cancer vascular leukocytes require arginase-1 activity for t cell suppression. Molecular immunology 46(2):258–268PubMedCrossRef Bak SP, Alonso A, Turk MJ, Berwin B (2008) Murine ovarian cancer vascular leukocytes require arginase-1 activity for t cell suppression. Molecular immunology 46(2):258–268PubMedCrossRef
66.
go back to reference Munder M (2009) Arginase: An emerging key player in the mammalian immune system. British journal of pharmacology 158(3):638–651PubMedCrossRef Munder M (2009) Arginase: An emerging key player in the mammalian immune system. British journal of pharmacology 158(3):638–651PubMedCrossRef
67.
go back to reference Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of cd8+ t cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999PubMed Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of cd8+ t cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999PubMed
68.
go back to reference Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells Immunol Rev 222(162–179. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells Immunol Rev 222(162–179.
69.
go back to reference Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, et al. (1994) Functional activation of jak1 and jak3 by selective association with il-2 receptor subunits Science (New York, N.Y 266(5187): 1045–1047. Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, et al. (1994) Functional activation of jak1 and jak3 by selective association with il-2 receptor subunits Science (New York, N.Y 266(5187): 1045–1047.
70.
go back to reference Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit t cell responses by an no-dependent mechanism. J Immunol 168(2):689–695PubMed Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit t cell responses by an no-dependent mechanism. J Immunol 168(2):689–695PubMed
71.
go back to reference Johnson TS, Munn DH (2012) Host indoleamine 2,3-dioxygenase: Contribution to systemic acquired tumor tolerance. Immunological investigations 41(6–7):765–797PubMedCrossRef Johnson TS, Munn DH (2012) Host indoleamine 2,3-dioxygenase: Contribution to systemic acquired tumor tolerance. Immunological investigations 41(6–7):765–797PubMedCrossRef
72.
go back to reference Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of t cell proliferation. J Immunol 164(7):3596–3599PubMed Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of t cell proliferation. J Immunol 164(7):3596–3599PubMed
73.
go back to reference Suciu-Foca N, Berloco P, Cortesini R (2009) Tolerogenic dendritic cells in cancer, transplantation, and autoimmune diseases. Human immunology 70(5):277–280PubMedCrossRef Suciu-Foca N, Berloco P, Cortesini R (2009) Tolerogenic dendritic cells in cancer, transplantation, and autoimmune diseases. Human immunology 70(5):277–280PubMedCrossRef
74.
go back to reference Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, dcs and tryptophan. Much ado about ido Trends in immunology 24(5):242–248CrossRef Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, dcs and tryptophan. Much ado about ido Trends in immunology 24(5):242–248CrossRef
75.
go back to reference MacKenzie CR, Heseler K, Muller A, Daubener W (2007) Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: Tryptophan depletion versus production of toxic kynurenines. Current drug metabolism 8(3):237–244PubMedCrossRef MacKenzie CR, Heseler K, Muller A, Daubener W (2007) Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: Tryptophan depletion versus production of toxic kynurenines. Current drug metabolism 8(3):237–244PubMedCrossRef
76.
go back to reference Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunology and cell biology 81(4):247–265PubMedCrossRef Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunology and cell biology 81(4):247–265PubMedCrossRef
77.
go back to reference Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH (2002) Cells expressing indoleamine 2,3-dioxygenase inhibit t cell responses. J Immunol 168(8):3771–3776PubMed Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH (2002) Cells expressing indoleamine 2,3-dioxygenase inhibit t cell responses. J Immunol 168(8):3771–3776PubMed
78.
go back to reference Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene bin1, potentiates cancer chemotherapy. Nature medicine 11(3):312–319PubMedCrossRef Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene bin1, potentiates cancer chemotherapy. Nature medicine 11(3):312–319PubMedCrossRef
79.
go back to reference Popov A, Abdullah Z, Wickenhauser C, Saric T, Driesen J, Hanisch FG, Domann E, Raven EL, Dehus O, Hermann C, Eggle D, Debey S, Chakraborty T, Kronke M, Utermohlen O, Schultze JL (2006) Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following listeria monocytogenes infection. The Journal of clinical investigation 116(12):3160–3170PubMedCrossRef Popov A, Abdullah Z, Wickenhauser C, Saric T, Driesen J, Hanisch FG, Domann E, Raven EL, Dehus O, Hermann C, Eggle D, Debey S, Chakraborty T, Kronke M, Utermohlen O, Schultze JL (2006) Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following listeria monocytogenes infection. The Journal of clinical investigation 116(12):3160–3170PubMedCrossRef
80.
go back to reference Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and cd4 + foxp3+ t cells by probiotics administration suppresses immune disorders. Proceedings of the National Academy of Sciences of the United States of America 107(5):2159–2164PubMedCrossRef Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and cd4 + foxp3+ t cells by probiotics administration suppresses immune disorders. Proceedings of the National Academy of Sciences of the United States of America 107(5):2159–2164PubMedCrossRef
81.
go back to reference Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. The Journal of clinical investigation 114(2):280–290PubMed Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. The Journal of clinical investigation 114(2):280–290PubMed
82.
go back to reference Farias AS, Spagnol GS, Bordeaux-Rego P, Oliveira CO, Fontana AG, de Paula RF, Santos MP, Pradella F, Moraes AS, Oliveira EC, Longhini AL, Rezende AC, Vaisberg MW, Santos LM (2013) Vitamin d3 induces ido(+) tolerogenic dcs and enhances treg, reducing the severity of eae. CNS neuroscience & therapeutics 19(4):269–277CrossRef Farias AS, Spagnol GS, Bordeaux-Rego P, Oliveira CO, Fontana AG, de Paula RF, Santos MP, Pradella F, Moraes AS, Oliveira EC, Longhini AL, Rezende AC, Vaisberg MW, Santos LM (2013) Vitamin d3 induces ido(+) tolerogenic dcs and enhances treg, reducing the severity of eae. CNS neuroscience & therapeutics 19(4):269–277CrossRef
83.
go back to reference Lanzinger M, Jurgens B, Hainz U, Dillinger B, Raberger J, Fuchs D, Heitger A (2012) Ambivalent effects of dendritic cells displaying prostaglandin e2-induced indoleamine 2,3-dioxygenase. European journal of immunology 42(5):1117–1128PubMedCrossRef Lanzinger M, Jurgens B, Hainz U, Dillinger B, Raberger J, Fuchs D, Heitger A (2012) Ambivalent effects of dendritic cells displaying prostaglandin e2-induced indoleamine 2,3-dioxygenase. European journal of immunology 42(5):1117–1128PubMedCrossRef
84.
go back to reference Heitger A (2011) Regulation of expression and function of ido in human dendritic cells. Current medicinal chemistry 18(15):2222–2233PubMedCrossRef Heitger A (2011) Regulation of expression and function of ido in human dendritic cells. Current medicinal chemistry 18(15):2222–2233PubMedCrossRef
85.
go back to reference Voedisch S, Rochlitzer S, Veres TZ, Spies E, Braun A (2012) Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PloS one 7(9):e45951PubMedCrossRef Voedisch S, Rochlitzer S, Veres TZ, Spies E, Braun A (2012) Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PloS one 7(9):e45951PubMedCrossRef
86.
go back to reference Kitamura H, Kobayashi M, Wakita D, Nishimura T (2012) Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. J Immunol 188(9):4200–4208PubMedCrossRef Kitamura H, Kobayashi M, Wakita D, Nishimura T (2012) Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. J Immunol 188(9):4200–4208PubMedCrossRef
87.
go back to reference da Silva L, Neves BM, Moura L, Cruz MT, Carvalho E (2011) Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochimica et biophysica acta 1813(10):1863–1871PubMedCrossRef da Silva L, Neves BM, Moura L, Cruz MT, Carvalho E (2011) Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochimica et biophysica acta 1813(10):1863–1871PubMedCrossRef
88.
go back to reference Makarenkova VP, Shurin GV, Tourkova IL, Balkir L, Pirtskhalaishvili G, Perez L, Gerein V, Siegfried JM, Shurin MR (2003) Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. Journal of neuroimmunology 145(1–2):55–67PubMedCrossRef Makarenkova VP, Shurin GV, Tourkova IL, Balkir L, Pirtskhalaishvili G, Perez L, Gerein V, Siegfried JM, Shurin MR (2003) Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. Journal of neuroimmunology 145(1–2):55–67PubMedCrossRef
89.
go back to reference Rulle S, Ah Kioon MD, Asensio C, Mussard J, Ea HK, Boissier MC, Liote F, Falgarone G (2012) Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology 136(2):252–264PubMedCrossRef Rulle S, Ah Kioon MD, Asensio C, Mussard J, Ea HK, Boissier MC, Liote F, Falgarone G (2012) Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology 136(2):252–264PubMedCrossRef
90.
go back to reference Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clinical cancer research : an official journal of the American Association for Cancer Research 17(23):7230–7239CrossRef Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clinical cancer research : an official journal of the American Association for Cancer Research 17(23):7230–7239CrossRef
91.
go back to reference Auriemma M, Brzoska T, Klenner L, Kupas V, Goerge T, Voskort M, Zhao Z, Sparwasser T, Luger TA, Loser K (2012) Alpha-msh-stimulated tolerogenic dendritic cells induce functional regulatory t cells and ameliorate ongoing skin inflammation. J Invest Dermatol 132(7):1814–1824PubMedCrossRef Auriemma M, Brzoska T, Klenner L, Kupas V, Goerge T, Voskort M, Zhao Z, Sparwasser T, Luger TA, Loser K (2012) Alpha-msh-stimulated tolerogenic dendritic cells induce functional regulatory t cells and ameliorate ongoing skin inflammation. J Invest Dermatol 132(7):1814–1824PubMedCrossRef
92.
go back to reference Chung H, Lee JH, Jeong D, Han IO, Oh ES (2012) Melanocortin 1 receptor regulates melanoma cell migration by controlling syndecan-2 expression. The Journal of biological chemistry 287(23):19326–19335PubMedCrossRef Chung H, Lee JH, Jeong D, Han IO, Oh ES (2012) Melanocortin 1 receptor regulates melanoma cell migration by controlling syndecan-2 expression. The Journal of biological chemistry 287(23):19326–19335PubMedCrossRef
93.
go back to reference Zhong K, Song W, Wang Q, Wang C, Liu X, Chen D, Zhu Z, Wu Y, Zhang W, Zhang M (2012) Murine myeloid dendritic cells that phagocytose apoptotic t cells inhibit the immune response via no. PloS one 7(11):e49378PubMedCrossRef Zhong K, Song W, Wang Q, Wang C, Liu X, Chen D, Zhu Z, Wu Y, Zhang W, Zhang M (2012) Murine myeloid dendritic cells that phagocytose apoptotic t cells inhibit the immune response via no. PloS one 7(11):e49378PubMedCrossRef
94.
go back to reference Mobergslien A, Sioud M (2012) Galectin-1 and −3 gene silencing in immature and mature dendritic cells enhances t cell activation and interferon-gamma production. Journal of leukocyte biology 91(3):461–467PubMedCrossRef Mobergslien A, Sioud M (2012) Galectin-1 and −3 gene silencing in immature and mature dendritic cells enhances t cell activation and interferon-gamma production. Journal of leukocyte biology 91(3):461–467PubMedCrossRef
95.
go back to reference Topalian SL, Drake CG, Pardoll DM (2012) Targeting the pd-1/b7-h1(pd-l1) pathway to activate anti-tumor immunity. Current opinion in immunology 24(2):207–212PubMedCrossRef Topalian SL, Drake CG, Pardoll DM (2012) Targeting the pd-1/b7-h1(pd-l1) pathway to activate anti-tumor immunity. Current opinion in immunology 24(2):207–212PubMedCrossRef
96.
go back to reference Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, Goode EL, Kalli KR, Knutson KL (2011) Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186(12):6905–6913PubMedCrossRef Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, Goode EL, Kalli KR, Knutson KL (2011) Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186(12):6905–6913PubMedCrossRef
97.
go back to reference Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG (2012) Tgf-beta of lung cancer microenvironment upregulates b7h1 and gitrl expression in dendritic cells and is associated with regulatory t cell generation. Oncol Rep 28(2):615–621PubMed Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG (2012) Tgf-beta of lung cancer microenvironment upregulates b7h1 and gitrl expression in dendritic cells and is associated with regulatory t cell generation. Oncol Rep 28(2):615–621PubMed
98.
go back to reference Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, Mahnke K (2011) Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating b7-h3. J Thorac Oncol 6(7):1162–1168PubMedCrossRef Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, Mahnke K (2011) Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating b7-h3. J Thorac Oncol 6(7):1162–1168PubMedCrossRef
99.
go back to reference Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression Cancer research 66(11):5527–5536 Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression Cancer research 66(11):5527–5536
100.
go back to reference Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells Annual review of immunology 25(267–296. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells Annual review of immunology 25(267–296.
101.
go back to reference Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274PubMedCrossRef Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274PubMedCrossRef
102.
go back to reference Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. Journal of Cancer 4(1):36–44PubMedCrossRef Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. Journal of Cancer 4(1):36–44PubMedCrossRef
103.
go back to reference Diao J, Mikhailova A, Tang M, Gu H, Zhao J, Cattral MS (2012) Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells Blood 119(21):4919–4927 Diao J, Mikhailova A, Tang M, Gu H, Zhao J, Cattral MS (2012) Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells Blood 119(21):4919–4927
Metadata
Title
Immunosuppressive Mechanisms of Regulatory Dendritic Cells in Cancer
Authors
Galina V. Shurin
Yang Ma
Michael R. Shurin
Publication date
01-08-2013
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 2/2013
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-013-0133-3

Other articles of this Issue 2/2013

Cancer Microenvironment 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine