Skip to main content
Top
Published in: European Radiology 6/2013

01-06-2013 | Neuro

Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus

Authors: Jérôme Hodel, Alain Lebret, Eric Petit, Xavier Leclerc, Marc Zins, Alexandre Vignaud, Philippe Decq, Alain Rahmouni

Published in: European Radiology | Issue 6/2013

Login to get access

Abstract

Objectives

To evaluate the feasibility of imaging the entire cerebrospinal fluid (CSF) volume using the SPACE MR sequence.

Methods

The SPACE sequence encompassing the brain and spine was performed at 1.5 T in 12 healthy volunteers and 26 consecutive patients with hydrocephalus. Image contrast was estimated using difference ratios in signal intensity between CSF and its background. Segmentation of CSF was performed using geometrical features and a topological assumption of CSF shapes. Subarachnoid and ventricular CSF space volumes were assessed in volunteers and patients and linear discriminant analysis was performed.

Results

Image contrast was 0.94 between the CSF and the brain and 0.90 between the CSF and the spinal cord. According to the phantom study, the accuracy of CSF volume measurement was 98.5 %. A clear distinction between patients and healthy volunteers was obtained using the linear discriminant analysis. Significant linear regression was found in healthy volunteers between ventricular (Vv) and the whole subarachnoid CSF volume (Vs) with Vv = 0.083 Vs.

Conclusions

Imaging of the entire CSF volume is feasible in healthy volunteers and patients with hydrocephalus. CSF volume can be obtained on a whole-body scale. This approach may be of use for the diagnosis and follow-up of patients with hydrocephalus.

Key Points

MRI assessment of CSF volume is feasible in healthy volunteers/hydrocephalus patients.
CSF volume can be obtained on a whole-body scale.
The ratio of subarachnoid and ventricular CSF is constant in healthy volunteers.
CSF linear discriminant analysis can distinguish between patients and healthy volunteers.
Entire CSF volume imaging is useful for diagnosing and following hydrocephalus.
Literature
1.
go back to reference Blatter DD, Bigler ED, Gale SD et al (1997) MR-based brain and cerebrospinal fluid measurement after traumatic brain injury: correlation with neuropsychological outcome. AJNR Am J Neuroradiol 18:1–10PubMed Blatter DD, Bigler ED, Gale SD et al (1997) MR-based brain and cerebrospinal fluid measurement after traumatic brain injury: correlation with neuropsychological outcome. AJNR Am J Neuroradiol 18:1–10PubMed
2.
go back to reference Kazan-Tannus JF, Dialani V, Kataoka ML et al (2007) MR volumetry of brain and CSF in fetuses referred for ventriculomegaly. AJR Am J Roentgenol 189:145–151PubMedCrossRef Kazan-Tannus JF, Dialani V, Kataoka ML et al (2007) MR volumetry of brain and CSF in fetuses referred for ventriculomegaly. AJR Am J Roentgenol 189:145–151PubMedCrossRef
3.
go back to reference Kitagaki H, Mori E, Ishii K et al (1998) CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284PubMed Kitagaki H, Mori E, Ishii K et al (1998) CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284PubMed
4.
go back to reference Lemieux L, Hammers A, Mackinnon T et al (2003) Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 49:872–884PubMedCrossRef Lemieux L, Hammers A, Mackinnon T et al (2003) Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 49:872–884PubMedCrossRef
5.
go back to reference Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682PubMed Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682PubMed
6.
go back to reference Lichy MP, Wietek BM, Mugler JP et al (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 40:754–760PubMedCrossRef Lichy MP, Wietek BM, Mugler JP et al (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 40:754–760PubMedCrossRef
7.
go back to reference Meindl T, Wirth S, Weckbach S et al (2009) Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences. Eur Radiol 19:713–721PubMedCrossRef Meindl T, Wirth S, Weckbach S et al (2009) Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences. Eur Radiol 19:713–721PubMedCrossRef
8.
go back to reference Baumert B, Wortler K, Steffinger D et al (2009) Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging 27:954–960PubMedCrossRef Baumert B, Wortler K, Steffinger D et al (2009) Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging 27:954–960PubMedCrossRef
9.
go back to reference Hodel J, Silvera J, Bekaert O et al (2011) Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution. Eur Radiol 21:402–410PubMedCrossRef Hodel J, Silvera J, Bekaert O et al (2011) Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution. Eur Radiol 21:402–410PubMedCrossRef
10.
go back to reference Lin C, Luciani A, Belhadj K et al (2009) Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology 250:905–915PubMedCrossRef Lin C, Luciani A, Belhadj K et al (2009) Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology 250:905–915PubMedCrossRef
11.
go back to reference Ohno Y, Koyama H, Onishi Y et al (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment–utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654PubMedCrossRef Ohno Y, Koyama H, Onishi Y et al (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment–utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654PubMedCrossRef
12.
go back to reference Punwani S, Taylor SA, Bainbridge A et al (2010) Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 255:182–190PubMedCrossRef Punwani S, Taylor SA, Bainbridge A et al (2010) Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 255:182–190PubMedCrossRef
13.
go back to reference Lin C, Luciani A, Itti E et al (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20:2027–2038PubMedCrossRef Lin C, Luciani A, Itti E et al (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20:2027–2038PubMedCrossRef
14.
go back to reference Machann J, Thamer C, Stefan N et al (2010) Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257:353–363PubMedCrossRef Machann J, Thamer C, Stefan N et al (2010) Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257:353–363PubMedCrossRef
15.
go back to reference Lee RR, Abraham RA, Quinn CB (2001) Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine 26:1172–1178PubMedCrossRef Lee RR, Abraham RA, Quinn CB (2001) Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine 26:1172–1178PubMedCrossRef
16.
go back to reference Relkin N, Marmarou A, Klinge P et al (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:4–16 Relkin N, Marmarou A, Klinge P et al (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:4–16
17.
go back to reference Dietrich O, Raya JG, Reeder SB et al (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef Dietrich O, Raya JG, Reeder SB et al (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef
18.
go back to reference Rosenkrantz AB, Neil J, Kong X et al (2010) Prostate cancer: Comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol 194:446–452PubMedCrossRef Rosenkrantz AB, Neil J, Kong X et al (2010) Prostate cancer: Comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol 194:446–452PubMedCrossRef
19.
go back to reference Segonne F (2005) Segmentation of Medical Images under Topological Constraints. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge MA, USA. Segonne F (2005) Segmentation of Medical Images under Topological Constraints. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge MA, USA.
20.
go back to reference Lebret A, Petit E, Durning B et al (2012) Quantification of the cerebrospinal fluid from a new whole body MRI sequence. Medical Imaging: Computer-Aided Diagnosis. doi:10.1117/12.906964 Lebret A, Petit E, Durning B et al (2012) Quantification of the cerebrospinal fluid from a new whole body MRI sequence. Medical Imaging: Computer-Aided Diagnosis. doi:10.​1117/​12.​906964
21.
go back to reference Klette R, Rosenfeld A (2004) Digital geometry: geometric methods for digital picture analysis. Morgan Kaufmann, San Francisco Klette R, Rosenfeld A (2004) Digital geometry: geometric methods for digital picture analysis. Morgan Kaufmann, San Francisco
22.
go back to reference Tsai W (1985) Moment-preserving thresholding: a new approach. Computer Vision, Graphics, and Image Processing 29:377–393CrossRef Tsai W (1985) Moment-preserving thresholding: a new approach. Computer Vision, Graphics, and Image Processing 29:377–393CrossRef
23.
go back to reference Frangi A, Niessen W, Vincken K et al (1998) Multiscale vessel enhancement filtering. Lecture Notes in Computer Science 1496:130–137CrossRef Frangi A, Niessen W, Vincken K et al (1998) Multiscale vessel enhancement filtering. Lecture Notes in Computer Science 1496:130–137CrossRef
24.
go back to reference Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing 2:176–201PubMedCrossRef Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing 2:176–201PubMedCrossRef
25.
go back to reference Duda R, Hart P, Stork D (2000) Pattern Classification. 2nd edn. Wiley Interscience. Duda R, Hart P, Stork D (2000) Pattern Classification. 2nd edn. Wiley Interscience.
26.
go back to reference Melhem ER (2000) Technical challenges in MR imaging of the cervical spine and cord. Magn Reson Imaging Clin N Am 8:435–452PubMed Melhem ER (2000) Technical challenges in MR imaging of the cervical spine and cord. Magn Reson Imaging Clin N Am 8:435–452PubMed
27.
go back to reference Coffey CE, Lucke JF, Saxton JA et al (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55:169–179PubMedCrossRef Coffey CE, Lucke JF, Saxton JA et al (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55:169–179PubMedCrossRef
28.
go back to reference Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887PubMedCrossRef Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887PubMedCrossRef
29.
go back to reference Lloyd KM, DelGaudio JM, Hudgins PA (2008) Imaging of skull base cerebrospinal fluid leaks in adults. Radiology 248:725–736PubMedCrossRef Lloyd KM, DelGaudio JM, Hudgins PA (2008) Imaging of skull base cerebrospinal fluid leaks in adults. Radiology 248:725–736PubMedCrossRef
30.
go back to reference Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54:1439–1447PubMedCrossRef Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54:1439–1447PubMedCrossRef
Metadata
Title
Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus
Authors
Jérôme Hodel
Alain Lebret
Eric Petit
Xavier Leclerc
Marc Zins
Alexandre Vignaud
Philippe Decq
Alain Rahmouni
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 6/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2732-7

Other articles of this Issue 6/2013

European Radiology 6/2013 Go to the issue