Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 2/2016

01-03-2016 | Review Article

IFITM5 mutations and osteogenesis imperfecta

Author: Nobutaka Hanagata

Published in: Journal of Bone and Mineral Metabolism | Issue 2/2016

Login to get access

Abstract

Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5′ untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.
Literature
1.
go back to reference Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254CrossRefPubMedPubMedCentral Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254CrossRefPubMedPubMedCentral
2.
go back to reference Everitt AR, Clare S, Pertel T, John SP, Wash RS et al (2013) IFITM3 restricts the mobidity and mortality associated with influenza. Nature 484:519–523CrossRef Everitt AR, Clare S, Pertel T, John SP, Wash RS et al (2013) IFITM3 restricts the mobidity and mortality associated with influenza. Nature 484:519–523CrossRef
4.
go back to reference Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus and influenza A virus. PLoS Pathog 7:e1001258CrossRefPubMedPubMedCentral Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus and influenza A virus. PLoS Pathog 7:e1001258CrossRefPubMedPubMedCentral
5.
go back to reference Moffatt P, Salois P, Gaumond MH, St-Amant N, Godin E, Lanctot C (2002) Engineered viruses to select genes encoding secreted and membrane-bound proteins in mammalian cells. Nucleic Acids Res 30:4285–4294CrossRefPubMedPubMedCentral Moffatt P, Salois P, Gaumond MH, St-Amant N, Godin E, Lanctot C (2002) Engineered viruses to select genes encoding secreted and membrane-bound proteins in mammalian cells. Nucleic Acids Res 30:4285–4294CrossRefPubMedPubMedCentral
6.
go back to reference Hanagata N, Takemura T, Monkawa A, Ikoma T, Tanaka J (2007) Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J Biomed Mater Res Part A 83A:362–371CrossRef Hanagata N, Takemura T, Monkawa A, Ikoma T, Tanaka J (2007) Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J Biomed Mater Res Part A 83A:362–371CrossRef
7.
go back to reference Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL (2013) IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 9:e1003124CrossRefPubMedPubMedCentral Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL (2013) IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 9:e1003124CrossRefPubMedPubMedCentral
8.
go back to reference Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337CrossRefPubMedPubMedCentral Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337CrossRefPubMedPubMedCentral
9.
go back to reference Moffatt P, Gaumond MH, Salois P, Sellin K, Beestte MC, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1508CrossRefPubMed Moffatt P, Gaumond MH, Salois P, Sellin K, Beestte MC, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1508CrossRefPubMed
10.
go back to reference Patoine A, Gaumond MH, Jaiswal PK, Fassier F, Rauch F, Moffatt P (2014) Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfect mutations on its cellular destination. J Bone Miner Res 29:2004–2016CrossRefPubMed Patoine A, Gaumond MH, Jaiswal PK, Fassier F, Rauch F, Moffatt P (2014) Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfect mutations on its cellular destination. J Bone Miner Res 29:2004–2016CrossRefPubMed
11.
go back to reference Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29:279–290CrossRefPubMed Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29:279–290CrossRefPubMed
12.
go back to reference Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348CrossRefPubMedPubMedCentral Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348CrossRefPubMedPubMedCentral
13.
go back to reference Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357CrossRefPubMedPubMedCentral Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357CrossRefPubMedPubMedCentral
14.
go back to reference Koyer-Kuhn H, Semler O, Garbes L, Zimmermann K, Becker J, Wollnik B, Schoenau E, Netzer C (2014) A nonclassical IFITM5 mutation located in the coding region causes severe osteogenesis imperfect with prenatal onset. J Bone Miner Res 29:1387–1391CrossRef Koyer-Kuhn H, Semler O, Garbes L, Zimmermann K, Becker J, Wollnik B, Schoenau E, Netzer C (2014) A nonclassical IFITM5 mutation located in the coding region causes severe osteogenesis imperfect with prenatal onset. J Bone Miner Res 29:1387–1391CrossRef
15.
go back to reference Guillen-Navarro E, Ballesta-Martinez MJ, Valencia M, Bueno AM, Martinez-Glez V, Lopez-Gonzalez V, Burnyte B, Utkus A, Lapunzia P, Ruiz-Perez VL (2014) Two mutations in IFITM5 causing distinct form of osteogenesis imperfect. Am J Med Genet A 164A:1136–1142CrossRefPubMed Guillen-Navarro E, Ballesta-Martinez MJ, Valencia M, Bueno AM, Martinez-Glez V, Lopez-Gonzalez V, Burnyte B, Utkus A, Lapunzia P, Ruiz-Perez VL (2014) Two mutations in IFITM5 causing distinct form of osteogenesis imperfect. Am J Med Genet A 164A:1136–1142CrossRefPubMed
16.
go back to reference Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, Bae A, Quinlan A, Glorieux FH, Clemens TL, Marini JC (2014) A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 29:1402–1411CrossRefPubMedPubMedCentral Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, Bae A, Quinlan A, Glorieux FH, Clemens TL, Marini JC (2014) A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 29:1402–1411CrossRefPubMedPubMedCentral
17.
20.
go back to reference Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD et al (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221CrossRefPubMedPubMedCentral Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD et al (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221CrossRefPubMedPubMedCentral
21.
go back to reference Sykes B, Francis MJ, Smith R (1977) Altered relation of two collagen types in osteogenesis inmperfecta. N Engl J Med 296:1200–1203CrossRefPubMed Sykes B, Francis MJ, Smith R (1977) Altered relation of two collagen types in osteogenesis inmperfecta. N Engl J Med 296:1200–1203CrossRefPubMed
22.
go back to reference Trelstad RL, Rubin D, Gross J (1977) Osteogenesis imperfecta congenital: evidence for a generalized molecular disorder of collagen. Lab Invest 36:501–508PubMed Trelstad RL, Rubin D, Gross J (1977) Osteogenesis imperfecta congenital: evidence for a generalized molecular disorder of collagen. Lab Invest 36:501–508PubMed
23.
go back to reference Chu ML, Williams CJ, Pepe G, Hirsch JL, Prockop DJ, Ramirez F (1983) Internal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta. Nature 304:78–80CrossRefPubMed Chu ML, Williams CJ, Pepe G, Hirsch JL, Prockop DJ, Ramirez F (1983) Internal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta. Nature 304:78–80CrossRefPubMed
24.
go back to reference Steinmann B, Rao VH, Vogel A, Bruckner P, Gitzelmann R, Byers PH (1984) Cysteine in the triple-helical domain of one allelic product of the alpha 1 (I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J Biol Chem 259:11129–11138PubMed Steinmann B, Rao VH, Vogel A, Bruckner P, Gitzelmann R, Byers PH (1984) Cysteine in the triple-helical domain of one allelic product of the alpha 1 (I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J Biol Chem 259:11129–11138PubMed
25.
go back to reference Cohn DH, Byers PH, Steinmann B, Gelinas RE (1986) Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human pro plpha 1(I) collagen allele. Proc Natl Acad Sci USA 83:6045–6047CrossRefPubMedPubMedCentral Cohn DH, Byers PH, Steinmann B, Gelinas RE (1986) Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human pro plpha 1(I) collagen allele. Proc Natl Acad Sci USA 83:6045–6047CrossRefPubMedPubMedCentral
26.
go back to reference Sykes B, Ogilvie D, Wordsworth P, Wallis G, Mathew C, Beighton P, Nicholls A, Pope FM, Thompson E, Tsipouras P, Schwartz R, Jensson O, Arnason A, Børresen A-L, Heiberg A, Frey D, Steinman B (1990) Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet 46:293–307PubMedPubMedCentral Sykes B, Ogilvie D, Wordsworth P, Wallis G, Mathew C, Beighton P, Nicholls A, Pope FM, Thompson E, Tsipouras P, Schwartz R, Jensson O, Arnason A, Børresen A-L, Heiberg A, Frey D, Steinman B (1990) Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet 46:293–307PubMedPubMedCentral
27.
go back to reference Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304CrossRefPubMed Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304CrossRefPubMed
28.
go back to reference Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD, Panny SR, Gulamali-Majid F, Tishkoff SA, Rebbeck TR, Gueye SM, Bailey-Wilson JE, Brody LC, Rotimi CN, Marini JC (2012) A founder mutation in LEPRE1 carried by 1.5 % of West Africans and 0.4 % of African Americans causes lethal recessive osteogenesis imperfecta. Genet Med Off J Am Coll Med Genet 14:543–551 Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD, Panny SR, Gulamali-Majid F, Tishkoff SA, Rebbeck TR, Gueye SM, Bailey-Wilson JE, Brody LC, Rotimi CN, Marini JC (2012) A founder mutation in LEPRE1 carried by 1.5 % of West Africans and 0.4 % of African Americans causes lethal recessive osteogenesis imperfecta. Genet Med Off J Am Coll Med Genet 14:543–551
29.
go back to reference van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MH, Elting MW, Verbeke JI, Wijnaendts LC, Shaw NJ, Hogler W, McKeown C, Sistermans EA, Dalton A, Meijers-Heijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527CrossRefPubMedPubMedCentral van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MH, Elting MW, Verbeke JI, Wijnaendts LC, Shaw NJ, Hogler W, McKeown C, Sistermans EA, Dalton A, Meijers-Heijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527CrossRefPubMedPubMedCentral
30.
go back to reference Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRefPubMedPubMedCentral Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRefPubMedPubMedCentral
31.
go back to reference Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K et al (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfect. Am J Hum Genet 86:551–559CrossRefPubMedPubMedCentral Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K et al (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfect. Am J Hum Genet 86:551–559CrossRefPubMedPubMedCentral
32.
go back to reference Drögemüller C, Becker D, Brunner A, Haase B, Kircher P, Seeliger F, Fehr M, Baumann U, Lindblad-Toh K, Leeb T (2009) A missense mutation in the SERPINH1 gene in dachshunds with osteogenesis imperfecta. PLoS Genet 5:e1000579CrossRefPubMedPubMedCentral Drögemüller C, Becker D, Brunner A, Haase B, Kircher P, Seeliger F, Fehr M, Baumann U, Lindblad-Toh K, Leeb T (2009) A missense mutation in the SERPINH1 gene in dachshunds with osteogenesis imperfecta. PLoS Genet 5:e1000579CrossRefPubMedPubMedCentral
33.
go back to reference Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Balwi MA, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRefPubMedPubMedCentral Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Balwi MA, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRefPubMedPubMedCentral
34.
go back to reference Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350CrossRefPubMedPubMedCentral Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350CrossRefPubMedPubMedCentral
35.
go back to reference Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26(12):2798–2803CrossRefPubMedPubMedCentral Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26(12):2798–2803CrossRefPubMedPubMedCentral
36.
go back to reference Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371CrossRefPubMedPubMedCentral Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371CrossRefPubMedPubMedCentral
37.
go back to reference Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114CrossRefPubMedPubMedCentral Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114CrossRefPubMedPubMedCentral
38.
go back to reference Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, Alzayed ZS, Alkuraya FS (2012) Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 49:630–635CrossRefPubMed Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, Alzayed ZS, Alkuraya FS (2012) Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 49:630–635CrossRefPubMed
39.
go back to reference Volodarsky M, Markus B, Cohen I, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) A deletion mutation in TMEM38B associated with autosomal recessive osteogenesis imperfecta. Hum Mutat 34:582–586PubMed Volodarsky M, Markus B, Cohen I, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) A deletion mutation in TMEM38B associated with autosomal recessive osteogenesis imperfecta. Hum Mutat 34:582–586PubMed
40.
go back to reference Keupp K, Beleggia F, Kayserili H, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574CrossRefPubMedPubMedCentral Keupp K, Beleggia F, Kayserili H, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574CrossRefPubMedPubMedCentral
41.
go back to reference Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348CrossRefPubMed Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348CrossRefPubMed
42.
go back to reference Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92:590–597CrossRefPubMedPubMedCentral Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92:590–597CrossRefPubMedPubMedCentral
43.
go back to reference Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15:1650–1658CrossRefPubMed Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15:1650–1658CrossRefPubMed
45.
go back to reference Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, Ramirez N, Fahiminiya S, Majewski J, Glorieux FH (2013) Osteogenesis imperfecta type V: Marker pheneotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 50:21–24CrossRefPubMed Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, Ramirez N, Fahiminiya S, Majewski J, Glorieux FH (2013) Osteogenesis imperfecta type V: Marker pheneotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 50:21–24CrossRefPubMed
46.
go back to reference Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SC, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Roberts TT, Brennen FS, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res 28:1523–1530CrossRefPubMedPubMedCentral Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SC, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Roberts TT, Brennen FS, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res 28:1523–1530CrossRefPubMedPubMedCentral
47.
go back to reference Cheung MS, Glorieux FH, Rauch F (2007) Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 22:1181–1186CrossRefPubMed Cheung MS, Glorieux FH, Rauch F (2007) Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 22:1181–1186CrossRefPubMed
48.
go back to reference Zeitlin L, Rauch F, Travers R, Munns C, Glorieux FH (2006) The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta type V. Bone 38:13–20CrossRefPubMed Zeitlin L, Rauch F, Travers R, Munns C, Glorieux FH (2006) The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta type V. Bone 38:13–20CrossRefPubMed
49.
go back to reference Fitzgerald J, Holden P, Wright H, Wilmot B, Hata A, Steiner RD, Basel D (2013) Phenotypic variability in individuals with type V osteogenesis imperfecta with identical IFITM5 mutations. J Rare Disord 1:37–42 Fitzgerald J, Holden P, Wright H, Wilmot B, Hata A, Steiner RD, Basel D (2013) Phenotypic variability in individuals with type V osteogenesis imperfecta with identical IFITM5 mutations. J Rare Disord 1:37–42
50.
go back to reference Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26:894–898CrossRefPubMed Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26:894–898CrossRefPubMed
51.
go back to reference Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17:30–38CrossRefPubMed Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17:30–38CrossRefPubMed
52.
53.
go back to reference Balasubramanian M, Parker MJ, Dalton A, Giunta C, Lindert U, Peres LC, Wagner BE, Arundel P, Offiah A, Bishop NJ (2013) Genotype-phenotype study in type V osteogenesis imperfecta. Clin Dysmorphol 22:93–101CrossRefPubMed Balasubramanian M, Parker MJ, Dalton A, Giunta C, Lindert U, Peres LC, Wagner BE, Arundel P, Offiah A, Bishop NJ (2013) Genotype-phenotype study in type V osteogenesis imperfecta. Clin Dysmorphol 22:93–101CrossRefPubMed
54.
go back to reference Takagi M, Sato S, Hara K, Tani C, Miyazaki O, Nishimura G, Hasegawa T (2013) A recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Med Genet A 161A:1980–1982CrossRefPubMed Takagi M, Sato S, Hara K, Tani C, Miyazaki O, Nishimura G, Hasegawa T (2013) A recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Med Genet A 161A:1980–1982CrossRefPubMed
55.
go back to reference Zhang Z, Li M, He JW, Fu WZ, Zhang CQ, Zhang ZL (2013) Phenotype and genotype analysis of Chinese patients with osteogenesis imperfect type V. PLoS One 8:e72337CrossRefPubMedPubMedCentral Zhang Z, Li M, He JW, Fu WZ, Zhang CQ, Zhang ZL (2013) Phenotype and genotype analysis of Chinese patients with osteogenesis imperfect type V. PLoS One 8:e72337CrossRefPubMedPubMedCentral
56.
go back to reference Grover M, Campeau PM, Lietman CD, Lu JT, Gibbs RA, Schlesinger AE, Lee BH (2013) Osteogenesis imperfecta type without features of type V caused by a mutation in the IFITM5 gene. J Bone Miner Res 28:2333–2337CrossRefPubMedPubMedCentral Grover M, Campeau PM, Lietman CD, Lu JT, Gibbs RA, Schlesinger AE, Lee BH (2013) Osteogenesis imperfecta type without features of type V caused by a mutation in the IFITM5 gene. J Bone Miner Res 28:2333–2337CrossRefPubMedPubMedCentral
57.
go back to reference Kim OH, Jin DK, Kosaki K, Kim JW, Cho SY, Yoo WJ, Choi IH, Nishimura G, Ikegawa S, Cho TJ (2013) Osteogenesis imperfecta type V: Clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 161A:1972–1979CrossRefPubMed Kim OH, Jin DK, Kosaki K, Kim JW, Cho SY, Yoo WJ, Choi IH, Nishimura G, Ikegawa S, Cho TJ (2013) Osteogenesis imperfecta type V: Clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 161A:1972–1979CrossRefPubMed
58.
go back to reference Lazaus S, Mclnerney-Leo AM, McKenzie FA, Baynam G, Beoley S, Cavan BV, Munns CF, Pruijs JEH, Sillence D, Terhal PA, Pryce K, Brown M, Zankl A, Thomas G, Duncan EL (2014) The IFITM5 mutation c.-14C>T results in an elongated transcript expressed in human bone; and causes varying phenotypic severity of osteogenesis imperfecta type V. BMC Musculoskelet Disord 15:107CrossRef Lazaus S, Mclnerney-Leo AM, McKenzie FA, Baynam G, Beoley S, Cavan BV, Munns CF, Pruijs JEH, Sillence D, Terhal PA, Pryce K, Brown M, Zankl A, Thomas G, Duncan EL (2014) The IFITM5 mutation c.-14C>T results in an elongated transcript expressed in human bone; and causes varying phenotypic severity of osteogenesis imperfecta type V. BMC Musculoskelet Disord 15:107CrossRef
59.
go back to reference Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani A (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol 28:4688–4696CrossRefPubMedPubMedCentral Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani A (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol 28:4688–4696CrossRefPubMedPubMedCentral
60.
go back to reference Lietman CD, Marom R, Munivez E, Bertin TK, Jiang M-M, Chen Y, Dawson B, Weis MA, Eyre D, Lee B (2015) A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 30:498–507CrossRefPubMedCentral Lietman CD, Marom R, Munivez E, Bertin TK, Jiang M-M, Chen Y, Dawson B, Weis MA, Eyre D, Lee B (2015) A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 30:498–507CrossRefPubMedCentral
61.
62.
go back to reference Borg ML, Andrews ZB, Duh EJ, Zechner R, Meikle PJ, Watt MJ (2011) Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes 60:1458–1466CrossRefPubMedPubMedCentral Borg ML, Andrews ZB, Duh EJ, Zechner R, Meikle PJ, Watt MJ (2011) Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes 60:1458–1466CrossRefPubMedPubMedCentral
63.
go back to reference Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248CrossRefPubMed Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248CrossRefPubMed
64.
go back to reference Filleur S, Nelius T, de Riese W, Kennedy RC (2009) Characterization of PEDF: a multi-functional serpin family protein. J Cell Biol 106:769–775 Filleur S, Nelius T, de Riese W, Kennedy RC (2009) Characterization of PEDF: a multi-functional serpin family protein. J Cell Biol 106:769–775
65.
go back to reference Bogan R, Riddle R, Li Z, Kumar S, Nandal A, Faugere M-C, Boskey A, Crawford SE, Clemens T (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res 28:1531–1536CrossRefPubMedPubMedCentral Bogan R, Riddle R, Li Z, Kumar S, Nandal A, Faugere M-C, Boskey A, Crawford SE, Clemens T (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res 28:1531–1536CrossRefPubMedPubMedCentral
66.
go back to reference Gattu AK, Swenson ES, Iwakiri Y, Samuel VT, Troiano N, Berry R, Church CD, Rodeheffer MS, Carpenter TO, Chung C (2013) Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity, reduced bone mineral content. FASEB J 27:4384–4394CrossRefPubMedPubMedCentral Gattu AK, Swenson ES, Iwakiri Y, Samuel VT, Troiano N, Berry R, Church CD, Rodeheffer MS, Carpenter TO, Chung C (2013) Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity, reduced bone mineral content. FASEB J 27:4384–4394CrossRefPubMedPubMedCentral
67.
go back to reference Li F, Song N, Tombran-Tink J, Niyibizi C (2013) Pigment epithelium derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cell 31:2714–2723CrossRef Li F, Song N, Tombran-Tink J, Niyibizi C (2013) Pigment epithelium derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cell 31:2714–2723CrossRef
68.
go back to reference Hanagata N, Li X (2011) Osteoblast-enriched membrane protein IFITM5 regulates the association of CD9 with an FKBP11-CD81-FPRP complex and stimulates expression of interferon-induced genes. Biochem Biophys Res Commun 409:378–384CrossRefPubMed Hanagata N, Li X (2011) Osteoblast-enriched membrane protein IFITM5 regulates the association of CD9 with an FKBP11-CD81-FPRP complex and stimulates expression of interferon-induced genes. Biochem Biophys Res Commun 409:378–384CrossRefPubMed
69.
go back to reference Tsukamoto T, Li X, Morita H, Minowa T, Aizawa T, Hanagata N, Demura M (2013) Role of S-palmitoylation on IFITM5 for the interaction with FKBP11 in osteoblast cells. PLoS One 8:e75831CrossRefPubMedPubMedCentral Tsukamoto T, Li X, Morita H, Minowa T, Aizawa T, Hanagata N, Demura M (2013) Role of S-palmitoylation on IFITM5 for the interaction with FKBP11 in osteoblast cells. PLoS One 8:e75831CrossRefPubMedPubMedCentral
70.
go back to reference Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Maldergem LV, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, Paepe AD, Lee B (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26:666–672CrossRefPubMedPubMedCentral Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Maldergem LV, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, Paepe AD, Lee B (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26:666–672CrossRefPubMedPubMedCentral
71.
go back to reference Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR et al (2013) Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet 22:1–17CrossRefPubMedPubMedCentral Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR et al (2013) Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet 22:1–17CrossRefPubMedPubMedCentral
72.
go back to reference Steinlein O, Aichinger E, Trucks H, Sander T (2011) Mutations in FKBP10 can cause a severe form of isolated osteogenesis imperfecta. BMC Med Genet 12:152CrossRefPubMedPubMedCentral Steinlein O, Aichinger E, Trucks H, Sander T (2011) Mutations in FKBP10 can cause a severe form of isolated osteogenesis imperfecta. BMC Med Genet 12:152CrossRefPubMedPubMedCentral
73.
go back to reference Lietman C, Rajagopal A, Homan EP, Munivez E, Jiang M-M, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D (2014) Connective tissue alterations in FKBP10 −/− mice. Hum Mol Genet 23:4822–4831CrossRefPubMedPubMedCentral Lietman C, Rajagopal A, Homan EP, Munivez E, Jiang M-M, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D (2014) Connective tissue alterations in FKBP10 −/− mice. Hum Mol Genet 23:4822–4831CrossRefPubMedPubMedCentral
74.
go back to reference Smotry JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587CrossRef Smotry JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587CrossRef
75.
go back to reference Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Phillip MR (2011) FKBP12 binds to acylated H-Ras and promotes depalmitoylation. Mol Cell 47:173–185CrossRef Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Phillip MR (2011) FKBP12 binds to acylated H-Ras and promotes depalmitoylation. Mol Cell 47:173–185CrossRef
76.
go back to reference Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Phillips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Gorgi complex via a nonvesicular pathway. J Cell Biol 170:261–272CrossRefPubMedPubMedCentral Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Phillips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Gorgi complex via a nonvesicular pathway. J Cell Biol 170:261–272CrossRefPubMedPubMedCentral
77.
go back to reference Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752CrossRefPubMed Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752CrossRefPubMed
78.
go back to reference Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471CrossRefPubMed Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471CrossRefPubMed
79.
go back to reference Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, Suzuki M, Minami S, Iwasaki T, Goya S, Kijima T, Kumagai T, Yoshida M, Osaki T, Komori T, Mekada E, Kawase I (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097CrossRefPubMedPubMedCentral Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, Suzuki M, Minami S, Iwasaki T, Goya S, Kijima T, Kumagai T, Yoshida M, Osaki T, Komori T, Mekada E, Kawase I (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097CrossRefPubMedPubMedCentral
80.
go back to reference Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC (2015) Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 100:E325–E332CrossRefPubMedPubMedCentral Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC (2015) Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 100:E325–E332CrossRefPubMedPubMedCentral
Metadata
Title
IFITM5 mutations and osteogenesis imperfecta
Author
Nobutaka Hanagata
Publication date
01-03-2016
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 2/2016
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-015-0667-1

Other articles of this Issue 2/2016

Journal of Bone and Mineral Metabolism 2/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.