Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Identification of three new isolates of Tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses

Authors: Zhenjia Zhang, Deya Wang, Chengming Yu, Zenghui Wang, Jiahong Dong, Kerong Shi, Xuefeng Yuan

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Destructive diseases caused by Tomato spotted wilt virus (TSWV) have been reported associated with many important plants worldwide. Recently, TSWV was reported to infect different hosts in China. It is of value to clone TSWV isolates from different hosts and examine diversity and evolution among different TSWV isolates in China as well as worldwide.

Methods

RT-PCR was used to clone the full-length genome (L, M and S segments) of three new isolates of TSWV that infected different hosts (tobacco, red pepper and green pepper) in China. Identity of nucleotide and amino acid sequences among TSWV isolates were analyzed by DNAMAN. MEGA 5.0 was used to construct phylogenetic trees. RDP4 was used to detect recombination events during evolution of these isolates.

Results

Whole-genome sequences of three new TSWV isolates in China were determined. Together with other available isolates, 29 RNA L, 62 RNA M and 66 RNA S of TSWV isolates were analyzed for molecular diversity, phylogenetic and recombination events. This analysis revealed that the entire TSWV genome, especially the M and S RNAs, had major variations in genomic size that mainly involve the A-U rich intergenic region (IGR). Phylogenetic analyses on TSWV isolates worldwide revealed evidence for frequent reassortments in the evolution of tripartite negative-sense RNA genome. Significant numbers of recombination events with apparent 5′ regional preference were detected among TSWV isolates worldwide. Moreover, TSWV isolates with similar recombination events usually had closer relationships in phylogenetic trees.

Conclusions

All five Chinese TSWV isolates including three TSWV isolates of this study and previously reported two isolates can be divided into two groups with different origins based on molecular diversity and phylogenetic analysis. During their evolution, both reassortment and recombination played roles. These results suggest that recombination could be an important mechanism in the evolution of multipartite RNA viruses, even negative-sense RNA viruses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brittlebank CC. Tomato diseases. J Agri Victoria. 1919;27:231–5. Brittlebank CC. Tomato diseases. J Agri Victoria. 1919;27:231–5.
2.
go back to reference Smith KM. Studies on plant virus diseases. XI. Further experiments with a ringspot virus: its identification with spotted wilt of tomato. Ann Appl Biol. 1932;19:305–20.CrossRef Smith KM. Studies on plant virus diseases. XI. Further experiments with a ringspot virus: its identification with spotted wilt of tomato. Ann Appl Biol. 1932;19:305–20.CrossRef
3.
go back to reference Moore ES. The kromnek or Kat river diease of tobacco and tomato in the east province (South Africa). Dept. Agric., union of South Africa. Sci Bull. 1933;123:5–28. Moore ES. The kromnek or Kat river diease of tobacco and tomato in the east province (South Africa). Dept. Agric., union of South Africa. Sci Bull. 1933;123:5–28.
4.
go back to reference Haliwell RS, Philley G. Spotted wilt of peanut in Texas. Plant Dis Rep. 1974;58:23–5. Haliwell RS, Philley G. Spotted wilt of peanut in Texas. Plant Dis Rep. 1974;58:23–5.
5.
go back to reference Culbreath AK, Csinos AS, Bertrand PF, Demski JW. Tomato spotted wilt virus epidemic in flue-cured tobacco in Georgia. Plant Dis. 1991;75:483–5.CrossRef Culbreath AK, Csinos AS, Bertrand PF, Demski JW. Tomato spotted wilt virus epidemic in flue-cured tobacco in Georgia. Plant Dis. 1991;75:483–5.CrossRef
6.
go back to reference Maluf WR, Toma-Brahini M, Corte RD. Progress in breeding tomatoes for resistance to tomato spotted wilt. Braz J Genet. 1991;14:509–25. Maluf WR, Toma-Brahini M, Corte RD. Progress in breeding tomatoes for resistance to tomato spotted wilt. Braz J Genet. 1991;14:509–25.
7.
go back to reference Peters D, Wijkamp I, van de Wetering F, Goldbach R. Vector relations in the transmission and epidemiology of tospoviruses. Acta Hort. 1996;431:29–43.CrossRef Peters D, Wijkamp I, van de Wetering F, Goldbach R. Vector relations in the transmission and epidemiology of tospoviruses. Acta Hort. 1996;431:29–43.CrossRef
8.
go back to reference EPPO: Data sheets on quarantine pests: Tomato spotted wilt tospovirus. (revision of original 1997c data sheet). 2004. EPPO: Data sheets on quarantine pests: Tomato spotted wilt tospovirus. (revision of original 1997c data sheet). 2004.
9.
go back to reference Abad JA, Moyer JW, Kennedy GG, Holmes GA, Cubeta MA. Tomato spotted wilt virus on potato in eastern North Carolina. Am J Potato Res. 2005;82:255–61.CrossRef Abad JA, Moyer JW, Kennedy GG, Holmes GA, Cubeta MA. Tomato spotted wilt virus on potato in eastern North Carolina. Am J Potato Res. 2005;82:255–61.CrossRef
10.
go back to reference Rosales M, Pappu HR, Arayam C, Aljaro A. Characterization of tomato spotted wilt virus (tospovirus, bunyaviridae) from lettuce (lactuca sativa) in Chile. Phytopathology. 2007;97:S101. Rosales M, Pappu HR, Arayam C, Aljaro A. Characterization of tomato spotted wilt virus (tospovirus, bunyaviridae) from lettuce (lactuca sativa) in Chile. Phytopathology. 2007;97:S101.
11.
go back to reference Sivprasad BJ, Gubba A. Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa. Afr J Agric Res. 2008;3:428–34. Sivprasad BJ, Gubba A. Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa. Afr J Agric Res. 2008;3:428–34.
12.
go back to reference Mumford RA, Barker I, Wood KR. The biology of the tospoviruses. Ann Appl Biol. 1996;128:159–83.CrossRef Mumford RA, Barker I, Wood KR. The biology of the tospoviruses. Ann Appl Biol. 1996;128:159–83.CrossRef
13.
go back to reference Golnaraghi AR, Shahraeen N, Pourrahim R, Ghorbani S, Farzadfar S. First report of Tomato spotted wilt virus on soybean in Iran. Plant Dis. 2001;85:1290.CrossRef Golnaraghi AR, Shahraeen N, Pourrahim R, Ghorbani S, Farzadfar S. First report of Tomato spotted wilt virus on soybean in Iran. Plant Dis. 2001;85:1290.CrossRef
14.
go back to reference Jones DR. Plant viruses transmitted by thrips. Eur J Plant Pathol. 2005;113:119–57.CrossRef Jones DR. Plant viruses transmitted by thrips. Eur J Plant Pathol. 2005;113:119–57.CrossRef
15.
go back to reference Massumi H, Samei A, Hosseini Pour A, Shaabanian M, Rahimian H. Occurrence, distribution, and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Dis. 2007;91:159–63.CrossRef Massumi H, Samei A, Hosseini Pour A, Shaabanian M, Rahimian H. Occurrence, distribution, and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Dis. 2007;91:159–63.CrossRef
16.
go back to reference Hu Z, Feng Z, Zhang Z, Liu Y, Tao X. Complete genome sequence of a Tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin. Arch Virol. 2011;156:1905–8.PubMedCrossRef Hu Z, Feng Z, Zhang Z, Liu Y, Tao X. Complete genome sequence of a Tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin. Arch Virol. 2011;156:1905–8.PubMedCrossRef
17.
go back to reference Lian S, Lee J-S, Cho WK, Yu J, Kim M-K, Choi H-S, et al. Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One. 2013;8(5):e63380.PubMedPubMedCentralCrossRef Lian S, Lee J-S, Cho WK, Yu J, Kim M-K, Choi H-S, et al. Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One. 2013;8(5):e63380.PubMedPubMedCentralCrossRef
18.
go back to reference Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015;15:80-9. Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015;15:80-9.
19.
go back to reference Kirk W, Terry L. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric For Entomol. 2003;5:301–10.CrossRef Kirk W, Terry L. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric For Entomol. 2003;5:301–10.CrossRef
20.
go back to reference Prins M, Goldbach R. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol. 1998;6:31–5.PubMedCrossRef Prins M, Goldbach R. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol. 1998;6:31–5.PubMedCrossRef
21.
go back to reference Pappu H, Jones R, Jain R. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 2009;141:219–36.PubMedCrossRef Pappu H, Jones R, Jain R. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 2009;141:219–36.PubMedCrossRef
22.
go back to reference Hanssen I, Lapidot M, Thomma B. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact. 2010;23:539–48.PubMedCrossRef Hanssen I, Lapidot M, Thomma B. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact. 2010;23:539–48.PubMedCrossRef
23.
go back to reference Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. Virus taxonomy. 8th report of the international committee on taxonomy of viruses. San Diego: Elsevier Academic Press; 2005. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. Virus taxonomy. 8th report of the international committee on taxonomy of viruses. San Diego: Elsevier Academic Press; 2005.
24.
go back to reference de Haan P, Kormelink R, Oliveira R, Poelwijk F, Peters D, Goldbach R. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol. 1991;72:2207–16.PubMedCrossRef de Haan P, Kormelink R, Oliveira R, Poelwijk F, Peters D, Goldbach R. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol. 1991;72:2207–16.PubMedCrossRef
25.
go back to reference Kormelink R, Haan P, Meurs C, Peters D, Goldbach R. The nucleotide sequence of the M RNA segment of Tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol. 1992;73:2795–804.PubMedCrossRef Kormelink R, Haan P, Meurs C, Peters D, Goldbach R. The nucleotide sequence of the M RNA segment of Tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol. 1992;73:2795–804.PubMedCrossRef
26.
go back to reference de Haan P, Wagemakers L, Peters D, Goldbach R. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J Gen Virol. 1990;71:1001–7.PubMedCrossRef de Haan P, Wagemakers L, Peters D, Goldbach R. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J Gen Virol. 1990;71:1001–7.PubMedCrossRef
27.
go back to reference Qiu WP, Geske SM, Hickey CM, Moyer J. Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology. 1998;244(1):186–94.PubMedCrossRef Qiu WP, Geske SM, Hickey CM, Moyer J. Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology. 1998;244(1):186–94.PubMedCrossRef
28.
go back to reference Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar J, Moury B. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J Gen Virol. 2011;92:961–73.PubMedCrossRef Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar J, Moury B. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J Gen Virol. 2011;92:961–73.PubMedCrossRef
30.
31.
go back to reference Fraile A, Alonso-Prados JL, Aranda MA, Bernal JJ, Malpica JM, Garcia-Arenal F. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol. 1997;71:934–40.PubMedPubMedCentral Fraile A, Alonso-Prados JL, Aranda MA, Bernal JJ, Malpica JM, Garcia-Arenal F. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol. 1997;71:934–40.PubMedPubMedCentral
32.
go back to reference Gagarinova A, Babu M, Stro¨mvik M, Wang A. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes. Virol J. 2008;5:143.PubMedPubMedCentralCrossRef Gagarinova A, Babu M, Stro¨mvik M, Wang A. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes. Virol J. 2008;5:143.PubMedPubMedCentralCrossRef
33.
go back to reference Seo J, Ohshima K, Lee H, Son M, Choi H, Lee HS, et al. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology. 2009;393:91–103.PubMedCrossRef Seo J, Ohshima K, Lee H, Son M, Choi H, Lee HS, et al. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology. 2009;393:91–103.PubMedCrossRef
34.
go back to reference Bruyere A, Wantroba M, Flasinski S, Dzianott A, Bujarski J. Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J Virol. 2000;74:4214–9.PubMedPubMedCentralCrossRef Bruyere A, Wantroba M, Flasinski S, Dzianott A, Bujarski J. Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J Virol. 2000;74:4214–9.PubMedPubMedCentralCrossRef
35.
go back to reference Chare ER, Gould EA, Holmes EC. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol. 2003;84:2691–703.PubMedCrossRef Chare ER, Gould EA, Holmes EC. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol. 2003;84:2691–703.PubMedCrossRef
37.
go back to reference Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.PubMedPubMedCentralCrossRef Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.PubMedPubMedCentralCrossRef
38.
go back to reference Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462–3.PubMedPubMedCentralCrossRef Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462–3.PubMedPubMedCentralCrossRef
Metadata
Title
Identification of three new isolates of Tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses
Authors
Zhenjia Zhang
Deya Wang
Chengming Yu
Zenghui Wang
Jiahong Dong
Kerong Shi
Xuefeng Yuan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0457-3

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.