Skip to main content
Top
Published in: Molecular Cancer 1/2007

Open Access 01-12-2007 | Research

Identification of novel androgen receptor target genes in prostate cancer

Authors: Unnati Jariwala, Jennifer Prescott, Li Jia, Artem Barski, Steve Pregizer, Jon P Cogan, Armin Arasheben, Wayne D Tilley, Howard I Scher, William L Gerald, Grant Buchanan, Gerhard A Coetzee, Baruch Frenkel

Published in: Molecular Cancer | Issue 1/2007

Login to get access

Abstract

Background

The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression.

Results

Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation.

Conclusion

AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general, response is stronger in C4-2B compared to LNCaP cells. Some of the genes near AR-occupied regions appear to be regulated by the AR in vivo as evidenced by their expression levels in prostate cancer tumors of various stages. Several AR target genes discovered in the present study, for example PRKCD and PYCR1, may open avenues in PCa research and aid the development of new approaches for disease management.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hsing AW, Chokkalingam AP: Prostate cancer epidemiology. Front Biosci. 2006, 11: 1388-1413. 10.2741/1891CrossRefPubMed Hsing AW, Chokkalingam AP: Prostate cancer epidemiology. Front Biosci. 2006, 11: 1388-1413. 10.2741/1891CrossRefPubMed
2.
go back to reference Marker PC, Donjacour AA, Dahiya R, Cunha GR: Hormonal, cellular, and molecular control of prostatic development. Dev Biol. 2003, 253 (2): 165-174. 10.1016/S0012-1606(02)00031-3CrossRefPubMed Marker PC, Donjacour AA, Dahiya R, Cunha GR: Hormonal, cellular, and molecular control of prostatic development. Dev Biol. 2003, 253 (2): 165-174. 10.1016/S0012-1606(02)00031-3CrossRefPubMed
3.
go back to reference Bonkhoff H, Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996, 28 (2): 98-106. 10.1002/(SICI)1097-0045(199602)28:2<98::AID-PROS4>3.0.CO;2-JCrossRefPubMed Bonkhoff H, Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996, 28 (2): 98-106. 10.1002/(SICI)1097-0045(199602)28:2<98::AID-PROS4>3.0.CO;2-JCrossRefPubMed
4.
go back to reference Geck P, Szelei J, Jimenez J, Lin TM, Sonnenschein C, Soto AM: Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. J Steroid Biochem Mol Biol. 1997, 63 (4–6): 211-218. 10.1016/S0960-0760(97)00122-2CrossRefPubMed Geck P, Szelei J, Jimenez J, Lin TM, Sonnenschein C, Soto AM: Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. J Steroid Biochem Mol Biol. 1997, 63 (4–6): 211-218. 10.1016/S0960-0760(97)00122-2CrossRefPubMed
5.
go back to reference Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD: Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer. 2004, 11 (3): 459-476. 10.1677/erc.1.00525CrossRefPubMed Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD: Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer. 2004, 11 (3): 459-476. 10.1677/erc.1.00525CrossRefPubMed
6.
go back to reference Balk SP: Androgen receptor as a target in androgen-independent prostate cancer. Urology. 2002, 60 (3 Suppl 1): 132-138. discussion 138–139., 10.1016/S0090-4295(02)01593-5CrossRefPubMed Balk SP: Androgen receptor as a target in androgen-independent prostate cancer. Urology. 2002, 60 (3 Suppl 1): 132-138. discussion 138–139., 10.1016/S0090-4295(02)01593-5CrossRefPubMed
7.
go back to reference Buchanan G, Irvine RA, Coetzee GA, Tilley WD: Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 2001, 20 (3–4): 207-223. 10.1023/A:1015531326689CrossRefPubMed Buchanan G, Irvine RA, Coetzee GA, Tilley WD: Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 2001, 20 (3–4): 207-223. 10.1023/A:1015531326689CrossRefPubMed
8.
go back to reference Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ: Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. 2002, 62 (4): 1008-1013.PubMed Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ: Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. 2002, 62 (4): 1008-1013.PubMed
9.
go back to reference Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL: Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004, 10 (1): 33-39. 10.1038/nm972CrossRefPubMed Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL: Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004, 10 (1): 33-39. 10.1038/nm972CrossRefPubMed
10.
go back to reference Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W, Greenberg NM: Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA. 2005, 102 (4): 1151-1156. 10.1073/pnas.0408925102PubMedCentralCrossRefPubMed Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W, Greenberg NM: Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA. 2005, 102 (4): 1151-1156. 10.1073/pnas.0408925102PubMedCentralCrossRefPubMed
11.
go back to reference Borgono CA, Diamandis EP: The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 2004, 4 (11): 876-890. 10.1038/nrc1474CrossRefPubMed Borgono CA, Diamandis EP: The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 2004, 4 (11): 876-890. 10.1038/nrc1474CrossRefPubMed
12.
go back to reference Whitbread AK, Veveris-Lowe TL, Lawrence MG, Nicol DL, Clements JA: The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition. Biol Chem. 2006, 387 (6): 707-714. 10.1515/BC.2006.089CrossRefPubMed Whitbread AK, Veveris-Lowe TL, Lawrence MG, Nicol DL, Clements JA: The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition. Biol Chem. 2006, 387 (6): 707-714. 10.1515/BC.2006.089CrossRefPubMed
13.
go back to reference Gnanapragasam VJ, Robson CN, Neal DE, Leung HY: Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene. 2002, 21 (33): 5069-5080. 10.1038/sj.onc.1205663CrossRefPubMed Gnanapragasam VJ, Robson CN, Neal DE, Leung HY: Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene. 2002, 21 (33): 5069-5080. 10.1038/sj.onc.1205663CrossRefPubMed
14.
go back to reference Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS: Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res. 1998, 58 (24): 5718-5724.PubMed Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS: Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res. 1998, 58 (24): 5718-5724.PubMed
15.
go back to reference Xu LL, Shi Y, Petrovics G, Sun C, Makarem M, Zhang W, Sesterhenn IA, McLeod DG, Sun L, Moul JW: PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Cancer Res. 2003, 63 (15): 4299-4304.PubMed Xu LL, Shi Y, Petrovics G, Sun C, Makarem M, Zhang W, Sesterhenn IA, McLeod DG, Sun L, Moul JW: PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Cancer Res. 2003, 63 (15): 4299-4304.PubMed
16.
go back to reference Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS: Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999, 59 (17): 4180-4184.PubMed Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS: Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999, 59 (17): 4180-4184.PubMed
17.
go back to reference Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB: TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006, 66 (7): 3396-3400. 10.1158/0008-5472.CAN-06-0168CrossRefPubMed Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB: TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006, 66 (7): 3396-3400. 10.1158/0008-5472.CAN-06-0168CrossRefPubMed
18.
go back to reference Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005, 310 (5748): 644-648. 10.1126/science.1117679CrossRefPubMed Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005, 310 (5748): 644-648. 10.1126/science.1117679CrossRefPubMed
19.
go back to reference Barski A, Frenkel B: ChIP Display: novel method for identification of genomic targets of transcription factors. Nucleic Acids Res. 2004, 32 (12): e104- 10.1093/nar/gnh097PubMedCentralCrossRefPubMed Barski A, Frenkel B: ChIP Display: novel method for identification of genomic targets of transcription factors. Nucleic Acids Res. 2004, 32 (12): e104- 10.1093/nar/gnh097PubMedCentralCrossRefPubMed
20.
go back to reference Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC, Chung LW: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994, 54 (10): 2577-2581.PubMed Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC, Chung LW: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994, 54 (10): 2577-2581.PubMed
21.
go back to reference Prescott J, Jariwala U, Jia L, Cogan JP, Barski A, Pregizer S, Arasheben A, Neilson JJ, Frenkel B, Coetzee GA: Androgen Receptor-Mediated Repression of Novel Target Genes. The Prostate. 2007, , Prescott J, Jariwala U, Jia L, Cogan JP, Barski A, Pregizer S, Arasheben A, Neilson JJ, Frenkel B, Coetzee GA: Androgen Receptor-Mediated Repression of Novel Target Genes. The Prostate. 2007, ,
22.
go back to reference Jia L, Shen HC, Wantroba M, Khalid O, Liang G, Wang Q, Gentzschein E, Pinski JK, Stanczyk FZ, Jones PA: Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. Mol Cell Biol. 2006, 26 (19): 7331-7341. 10.1128/MCB.00581-06PubMedCentralCrossRefPubMed Jia L, Shen HC, Wantroba M, Khalid O, Liang G, Wang Q, Gentzschein E, Pinski JK, Stanczyk FZ, Jones PA: Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. Mol Cell Biol. 2006, 26 (19): 7331-7341. 10.1128/MCB.00581-06PubMedCentralCrossRefPubMed
23.
go back to reference Jia L, Kim J, Shen H, Clark PE, Tilley WD, Coetzee GA: Androgen receptor activity at the prostate specific antigen locus: steroidal and non-steroidal mechanisms. Mol Cancer Res. 2003, 1 (5): 385-392.PubMed Jia L, Kim J, Shen H, Clark PE, Tilley WD, Coetzee GA: Androgen receptor activity at the prostate specific antigen locus: steroidal and non-steroidal mechanisms. Mol Cancer Res. 2003, 1 (5): 385-392.PubMed
24.
go back to reference Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P: Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004, 164 (1): 217-227.PubMedCentralCrossRefPubMed Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P: Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004, 164 (1): 217-227.PubMedCentralCrossRefPubMed
25.
go back to reference Scher HI, Sawyers CL: Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005, 23 (32): 8253-8261. 10.1200/JCO.2005.03.4777CrossRefPubMed Scher HI, Sawyers CL: Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005, 23 (32): 8253-8261. 10.1200/JCO.2005.03.4777CrossRefPubMed
26.
go back to reference Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, Hamel A, Bock ME, MacDonald BS: Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol. 1993, 7 (1): 23-36. 10.1210/me.7.1.23PubMed Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, Hamel A, Bock ME, MacDonald BS: Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol. 1993, 7 (1): 23-36. 10.1210/me.7.1.23PubMed
27.
go back to reference Murtha P, Tindall DJ, Young CY: Androgen induction of a human prostate-specific kallikrein, hKLK2: characterization of an androgen response element in the 5' promoter region of the gene. Biochemistry. 1993, 32 (25): 6459-6464. 10.1021/bi00076a020CrossRefPubMed Murtha P, Tindall DJ, Young CY: Androgen induction of a human prostate-specific kallikrein, hKLK2: characterization of an androgen response element in the 5' promoter region of the gene. Biochemistry. 1993, 32 (25): 6459-6464. 10.1021/bi00076a020CrossRefPubMed
28.
go back to reference Riegman PH, Vlietstra RJ, van der Korput JA, Brinkmann AO, Trapman J: The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol. 1991, 5 (12): 1921-1930.CrossRefPubMed Riegman PH, Vlietstra RJ, van der Korput JA, Brinkmann AO, Trapman J: The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol. 1991, 5 (12): 1921-1930.CrossRefPubMed
29.
go back to reference Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38 (11): 1289-1297. 10.1038/ng1901CrossRefPubMed Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38 (11): 1289-1297. 10.1038/ng1901CrossRefPubMed
30.
go back to reference Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z: A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006, 124 (1): 207-219. 10.1016/j.cell.2005.10.043CrossRefPubMed Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z: A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006, 124 (1): 207-219. 10.1016/j.cell.2005.10.043CrossRefPubMed
31.
go back to reference Wang Q, Carroll JS, Brown M: Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005, 19 (5): 631-642. 10.1016/j.molcel.2005.07.018CrossRefPubMed Wang Q, Carroll JS, Brown M: Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005, 19 (5): 631-642. 10.1016/j.molcel.2005.07.018CrossRefPubMed
32.
go back to reference Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA: Interchromosomal associations between alternatively expressed loci. Nature. 2005, 435 (7042): 637-645. 10.1038/nature03574CrossRefPubMed Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA: Interchromosomal associations between alternatively expressed loci. Nature. 2005, 435 (7042): 637-645. 10.1038/nature03574CrossRefPubMed
33.
go back to reference Willingham AT, Gingeras TR: TUF love for "junk" DNA. Cell. 2006, 125 (7): 1215-1220. 10.1016/j.cell.2006.06.009CrossRefPubMed Willingham AT, Gingeras TR: TUF love for "junk" DNA. Cell. 2006, 125 (7): 1215-1220. 10.1016/j.cell.2006.06.009CrossRefPubMed
34.
go back to reference Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, Hood L, Lin B: The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA. 2002, 99 (18): 11890-11895. 10.1073/pnas.182376299PubMedCentralCrossRefPubMed Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, Hood L, Lin B: The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA. 2002, 99 (18): 11890-11895. 10.1073/pnas.182376299PubMedCentralCrossRefPubMed
35.
go back to reference Xu LL, Su YP, Labiche R, Segawa T, Shanmugam N, McLeod DG, Moul JW, Srivastava S: Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. Int J Cancer. 2001, 92 (3): 322-328. 10.1002/ijc.1196CrossRefPubMed Xu LL, Su YP, Labiche R, Segawa T, Shanmugam N, McLeod DG, Moul JW, Srivastava S: Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. Int J Cancer. 2001, 92 (3): 322-328. 10.1002/ijc.1196CrossRefPubMed
36.
go back to reference Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, Klaren R, Grone EF, Wiesel M, Gudemann C: Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol. 2002, 160 (6): 2169-2180.PubMedCentralCrossRefPubMed Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, Klaren R, Grone EF, Wiesel M, Gudemann C: Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol. 2002, 160 (6): 2169-2180.PubMedCentralCrossRefPubMed
37.
go back to reference Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004, 116 (4): 499-509. 10.1016/S0092-8674(04)00127-8CrossRefPubMed Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004, 116 (4): 499-509. 10.1016/S0092-8674(04)00127-8CrossRefPubMed
38.
go back to reference Horak CE, Snyder M: ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 2002, 350: 469-483.CrossRefPubMed Horak CE, Snyder M: ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 2002, 350: 469-483.CrossRefPubMed
39.
go back to reference Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E: Genome-wide location and function of DNA binding proteins. Science. 2000, 290 (5500): 2306-2309. 10.1126/science.290.5500.2306CrossRefPubMed Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E: Genome-wide location and function of DNA binding proteins. Science. 2000, 290 (5500): 2306-2309. 10.1126/science.290.5500.2306CrossRefPubMed
40.
go back to reference Chen J, Sadowski I: Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements. Proc Natl Acad Sci USA. 2005, 102 (13): 4813-4818. 10.1073/pnas.0407069102PubMedCentralCrossRefPubMed Chen J, Sadowski I: Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements. Proc Natl Acad Sci USA. 2005, 102 (13): 4813-4818. 10.1073/pnas.0407069102PubMedCentralCrossRefPubMed
41.
go back to reference Kim J, Bhinge AA, Morgan XC, Iyer VR: Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat Methods. 2005, 2 (1): 47-53. 10.1038/nmeth726CrossRefPubMed Kim J, Bhinge AA, Morgan XC, Iyer VR: Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat Methods. 2005, 2 (1): 47-53. 10.1038/nmeth726CrossRefPubMed
42.
go back to reference Roh TY, Ngau WC, Cui K, Landsman D, Zhao K: High-resolution genome-wide mapping of histone modifications. Nat Biotechnol. 2004, 22 (8): 1013-1016. 10.1038/nbt990CrossRefPubMed Roh TY, Ngau WC, Cui K, Landsman D, Zhao K: High-resolution genome-wide mapping of histone modifications. Nat Biotechnol. 2004, 22 (8): 1013-1016. 10.1038/nbt990CrossRefPubMed
43.
go back to reference Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004, 119 (7): 1041-1054.PubMed Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004, 119 (7): 1041-1054.PubMed
44.
go back to reference van Steensel B, Henikoff S: Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 2000, 18 (4): 424-428. 10.1038/74487CrossRefPubMed van Steensel B, Henikoff S: Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 2000, 18 (4): 424-428. 10.1038/74487CrossRefPubMed
45.
go back to reference Haag P, Bektic J, Bartsch G, Klocker H, Eder IE: Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol. 2005, 96 (3–4): 251-258. 10.1016/j.jsbmb.2005.04.029CrossRefPubMed Haag P, Bektic J, Bartsch G, Klocker H, Eder IE: Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol. 2005, 96 (3–4): 251-258. 10.1016/j.jsbmb.2005.04.029CrossRefPubMed
46.
go back to reference Chang HC, Chen SC, Chen J, Hsieh JT: In vitro gene expression changes of androgen receptor coactivators after hormone deprivation in an androgen-dependent prostate cancer cell line. J Formos Med Assoc. 2005, 104 (9): 652-658.PubMed Chang HC, Chen SC, Chen J, Hsieh JT: In vitro gene expression changes of androgen receptor coactivators after hormone deprivation in an androgen-dependent prostate cancer cell line. J Formos Med Assoc. 2005, 104 (9): 652-658.PubMed
47.
go back to reference Li P, Yu X, Ge K, Melamed J, Roeder RG, Wang Z: Heterogeneous expression and functions of androgen receptor co-factors in primary prostate cancer. Am J Pathol. 2002, 161 (4): 1467-1474.PubMedCentralCrossRefPubMed Li P, Yu X, Ge K, Melamed J, Roeder RG, Wang Z: Heterogeneous expression and functions of androgen receptor co-factors in primary prostate cancer. Am J Pathol. 2002, 161 (4): 1467-1474.PubMedCentralCrossRefPubMed
48.
go back to reference Magee JA, Chang LW, Stormo GD, Milbrandt J: Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology. 2006, 147 (1): 590-598. 10.1210/en.2005-1001CrossRefPubMed Magee JA, Chang LW, Stormo GD, Milbrandt J: Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology. 2006, 147 (1): 590-598. 10.1210/en.2005-1001CrossRefPubMed
49.
go back to reference Maxwell SA, Davis GE: Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA. 2000, 97 (24): 13009-13014. 10.1073/pnas.230445997PubMedCentralCrossRefPubMed Maxwell SA, Davis GE: Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA. 2000, 97 (24): 13009-13014. 10.1073/pnas.230445997PubMedCentralCrossRefPubMed
50.
go back to reference Chen C, Dickman MB: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA. 2005, 102 (9): 3459-3464. 10.1073/pnas.0407960102PubMedCentralCrossRefPubMed Chen C, Dickman MB: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA. 2005, 102 (9): 3459-3464. 10.1073/pnas.0407960102PubMedCentralCrossRefPubMed
51.
go back to reference Kiley SC, Clark KJ, Goodnough M, Welch DR, Jaken S: Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Res. 1999, 59 (13): 3230-3238.PubMed Kiley SC, Clark KJ, Goodnough M, Welch DR, Jaken S: Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Res. 1999, 59 (13): 3230-3238.PubMed
52.
go back to reference Kharait S, Dhir R, Lauffenburger D, Wells A: Protein kinase Cdelta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem Biophys Res Commun. 2006, 343 (3): 848-856.CrossRefPubMed Kharait S, Dhir R, Lauffenburger D, Wells A: Protein kinase Cdelta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem Biophys Res Commun. 2006, 343 (3): 848-856.CrossRefPubMed
53.
go back to reference Fujii T, Garcia-Bermejo ML, Bernabo JL, Caamano J, Ohba M, Kuroki T, Li L, Yuspa SH, Kazanietz MG: Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. J Biol Chem. 2000, 275 (11): 7574-7582. 10.1074/jbc.275.11.7574CrossRefPubMed Fujii T, Garcia-Bermejo ML, Bernabo JL, Caamano J, Ohba M, Kuroki T, Li L, Yuspa SH, Kazanietz MG: Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. J Biol Chem. 2000, 275 (11): 7574-7582. 10.1074/jbc.275.11.7574CrossRefPubMed
54.
go back to reference Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Asano T, Hayakawa M: Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest. 2002, 109 (6): 827-836. 10.1172/JCI200214146PubMedCentralCrossRefPubMed Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Asano T, Hayakawa M: Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest. 2002, 109 (6): 827-836. 10.1172/JCI200214146PubMedCentralCrossRefPubMed
55.
go back to reference Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG: Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem. 2003, 278 (36): 33753-33762. 10.1074/jbc.M303313200CrossRefPubMed Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG: Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem. 2003, 278 (36): 33753-33762. 10.1074/jbc.M303313200CrossRefPubMed
56.
go back to reference Ortiz JA, Castillo M, del Toro ED, Mulet J, Gerber S, Valor LM, Sala S, Sala F, Gutierrez LM, Criado M: The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. J Neurochem. 2005, 95 (6): 1585-1596. 10.1111/j.1471-4159.2005.03473.xCrossRefPubMed Ortiz JA, Castillo M, del Toro ED, Mulet J, Gerber S, Valor LM, Sala S, Sala F, Gutierrez LM, Criado M: The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. J Neurochem. 2005, 95 (6): 1585-1596. 10.1111/j.1471-4159.2005.03473.xCrossRefPubMed
57.
go back to reference Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M: Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem Biophys Res Commun. 1998, 243 (2): 538-544. 10.1006/bbrc.1998.8123CrossRefPubMed Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M: Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem Biophys Res Commun. 1998, 243 (2): 538-544. 10.1006/bbrc.1998.8123CrossRefPubMed
58.
go back to reference Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4 (1): 45-60. 10.1038/nrc1251CrossRefPubMed Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4 (1): 45-60. 10.1038/nrc1251CrossRefPubMed
59.
go back to reference Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L: Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002, 295 (5560): 1726-1729. 10.1126/science.1069094CrossRefPubMed Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L: Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002, 295 (5560): 1726-1729. 10.1126/science.1069094CrossRefPubMed
60.
go back to reference Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M: TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium. 2006, 39 (2): 163-173. 10.1016/j.ceca.2005.10.006CrossRefPubMed Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M: TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium. 2006, 39 (2): 163-173. 10.1016/j.ceca.2005.10.006CrossRefPubMed
61.
go back to reference Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H: Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene. 2003, 22 (49): 7858-7861. 10.1038/sj.onc.1206895CrossRefPubMed Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H: Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene. 2003, 22 (49): 7858-7861. 10.1038/sj.onc.1206895CrossRefPubMed
62.
go back to reference Hayes JD, Pulford DJ: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995, 30 (6): 445-600.CrossRefPubMed Hayes JD, Pulford DJ: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995, 30 (6): 445-600.CrossRefPubMed
63.
go back to reference Xu J, Zheng SL, Chang B, Smith JR, Carpten JD, Stine OC, Isaacs SD, Wiley KE, Henning L, Ewing C: Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet. 2001, 108 (4): 335-345. 10.1007/s004390100488CrossRefPubMed Xu J, Zheng SL, Chang B, Smith JR, Carpten JD, Stine OC, Isaacs SD, Wiley KE, Henning L, Ewing C: Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet. 2001, 108 (4): 335-345. 10.1007/s004390100488CrossRefPubMed
64.
go back to reference Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA. 2006, 103 (38): 14068-14073. 10.1073/pnas.0605832103PubMedCentralCrossRefPubMed Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA. 2006, 103 (38): 14068-14073. 10.1073/pnas.0605832103PubMedCentralCrossRefPubMed
67.
go back to reference Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C: Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 2005, 65 (15): 6773-6779. 10.1158/0008-5472.CAN-05-1948CrossRefPubMed Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C: Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 2005, 65 (15): 6773-6779. 10.1158/0008-5472.CAN-05-1948CrossRefPubMed
68.
go back to reference Yamaguchi M, Yamamoto K, Miura O: Aberrant expression of the LHX4 LIM-homeobox gene caused by t(1;14)(q25;q32) in chronic myelogenous leukemia in biphenotypic blast crisis. Genes Chromosomes Cancer. 2003, 38 (3): 269-273. 10.1002/gcc.10283CrossRefPubMed Yamaguchi M, Yamamoto K, Miura O: Aberrant expression of the LHX4 LIM-homeobox gene caused by t(1;14)(q25;q32) in chronic myelogenous leukemia in biphenotypic blast crisis. Genes Chromosomes Cancer. 2003, 38 (3): 269-273. 10.1002/gcc.10283CrossRefPubMed
69.
go back to reference Verras M, Sun Z: Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 2006, 237 (1): 22-32. 10.1016/j.canlet.2005.06.004CrossRefPubMed Verras M, Sun Z: Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 2006, 237 (1): 22-32. 10.1016/j.canlet.2005.06.004CrossRefPubMed
70.
go back to reference Hewitt KJ, Agarwal R, Morin PJ: The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006, 6: 186- 10.1186/1471-2407-6-186PubMedCentralCrossRefPubMed Hewitt KJ, Agarwal R, Morin PJ: The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006, 6: 186- 10.1186/1471-2407-6-186PubMedCentralCrossRefPubMed
71.
go back to reference Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP, George WD, Shiels PG: Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer. 2006, 95 (8): 1056-1061. 10.1038/sj.bjc.6603384PubMedCentralCrossRefPubMed Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP, George WD, Shiels PG: Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer. 2006, 95 (8): 1056-1061. 10.1038/sj.bjc.6603384PubMedCentralCrossRefPubMed
72.
go back to reference Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J. 2002, 21 (10): 2383-2396. 10.1093/emboj/21.10.2383PubMedCentralCrossRefPubMed Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J. 2002, 21 (10): 2383-2396. 10.1093/emboj/21.10.2383PubMedCentralCrossRefPubMed
Metadata
Title
Identification of novel androgen receptor target genes in prostate cancer
Authors
Unnati Jariwala
Jennifer Prescott
Li Jia
Artem Barski
Steve Pregizer
Jon P Cogan
Armin Arasheben
Wayne D Tilley
Howard I Scher
William L Gerald
Grant Buchanan
Gerhard A Coetzee
Baruch Frenkel
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2007
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-6-39

Other articles of this Issue 1/2007

Molecular Cancer 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine