Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Research

Identification of a novel m6A-related lncRNAs signature and immunotherapeutic drug sensitivity in pancreatic adenocarcinoma

Authors: Xia-Qing Li, Shi-Qi Yin, Lin Chen, Aziguli Tulamaiti, Shu-Yu Xiao, Xue-Li Zhang, Lei Shi, Xiao-Cao Miao, Yan Yang, Xin Xing

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Pancreatic adenocarcinoma (PDAC) ranks as the fourth leading cause for cancer-related deaths worldwide. N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are closely related with poor prognosis and immunotherapeutic effect in PDAC. The aim of this study is to construct and validate a m6A-related lncRNAs signature and assess immunotherapeutic drug sensitivity in PDAC.

Methods

RNA-seq data for 178 cases of PDAC patients and 167 cases of normal pancreatic tissue were obtained from TCGA and GTEx databases, respectively. A set of 21 m6A-related genes were downloaded based on the previous report. Co-expression network was conducted to identify m6A-related lncRNAs in PDAC. Cox analyses and least absolute shrinkage and selection operator (Lasso) regression model were used to construct a risk prognosis model. The relationship between signature genes and immune function was explored by single-sample GSEA (ssGSEA). The tumor immune dysfunction and exclusion (TIDE) score and tumor mutation burden (TMB) were utilized to evaluate the response to immunotherapy. Furthermore, the expression levels of 4 m6A-related lncRNAs on PDAC cell lines were measured by the quantitative real-time PCR (qPCR). The drug sensitivity between the high- and low-risk groups was validated using PDAC cell lines by Cell-Counting Kit 8 (CCK8).

Results

The risk prognosis model was successfully constructed based on 4 m6A-related lncRNAs, and PDAC patients were divided into the high- and low-risk groups. The overall survival (OS) of the high-risk groups was more unfavorable compared with the low-risk groups. Receiver operating characteristic (ROC) curves demonstrated that the risk prognosis model reasonably predicted the 2-, 3- and 5-year OS of PDAC patients. qPCR analysis confirmed the decreased expression levels of 4 m6A-related lncRNAs in PDAC cells compared to the normal pancreatic cells. Furthermore, CCK8 assay revealed that Phenformin exhibited higher sensitivity in the high-risk groups, while Pyrimethamine exhibited higher sensitivity in the low-risk groups.

Conclusion

The prognosis of patients with PDAC were well predicted in the risk prognosis model based on m6A-related lncRNAs, and selected immunotherapy drugs have potential values for the treatment of pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tung S, Davis LE, Hallet J, Mavros MN, Mahar AL, Bubis LD, Hammad A, Zhao H, Earle CC, Barbera L, et al. Population-Level Symptom Assessment following Pancreaticoduodenectomy for Adenocarcinoma. JAMA Surg. 2019;154(11):e193348.CrossRefPubMedPubMedCentral Tung S, Davis LE, Hallet J, Mavros MN, Mahar AL, Bubis LD, Hammad A, Zhao H, Earle CC, Barbera L, et al. Population-Level Symptom Assessment following Pancreaticoduodenectomy for Adenocarcinoma. JAMA Surg. 2019;154(11):e193348.CrossRefPubMedPubMedCentral
2.
go back to reference Wang J, Chan DKW, Sen A, Ma WW, Straubinger RM. Tumor priming by SMO Inhibition enhances antibody delivery and efficacy in a pancreatic ductal adenocarcinoma model. Mol Cancer Ther. 2019;18(11):2074–84.CrossRefPubMedPubMedCentral Wang J, Chan DKW, Sen A, Ma WW, Straubinger RM. Tumor priming by SMO Inhibition enhances antibody delivery and efficacy in a pancreatic ductal adenocarcinoma model. Mol Cancer Ther. 2019;18(11):2074–84.CrossRefPubMedPubMedCentral
3.
go back to reference Sun Y, Fan J, Wang B, Meng Z, Ren D, Zhao J, Liu Z, Li D, Jin X, Wu H. The aberrant expression of ADAR1 promotes resistance to BET inhibitors in pancreatic cancer by stabilizing c-Myc. Am J Cancer Res. 2020;10(1):148–63.PubMedPubMedCentral Sun Y, Fan J, Wang B, Meng Z, Ren D, Zhao J, Liu Z, Li D, Jin X, Wu H. The aberrant expression of ADAR1 promotes resistance to BET inhibitors in pancreatic cancer by stabilizing c-Myc. Am J Cancer Res. 2020;10(1):148–63.PubMedPubMedCentral
4.
go back to reference Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, Zeng W, Ma L, Xie J. Immune-related lncRNA to Construct Novel signature and predict the Immune Landscape of Human Hepatocellular Carcinoma. Mol Ther Nucleic Acids. 2020;22:937–47.CrossRefPubMedPubMedCentral Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, Zeng W, Ma L, Xie J. Immune-related lncRNA to Construct Novel signature and predict the Immune Landscape of Human Hepatocellular Carcinoma. Mol Ther Nucleic Acids. 2020;22:937–47.CrossRefPubMedPubMedCentral
5.
go back to reference Haar J, Contrant M, Bernhardt K, Feederle R, Diederichs S, Pfeffer S, Delecluse HJ. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Res. 2016;44(3):1326–41.CrossRefPubMed Haar J, Contrant M, Bernhardt K, Feederle R, Diederichs S, Pfeffer S, Delecluse HJ. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Res. 2016;44(3):1326–41.CrossRefPubMed
6.
go back to reference Wang G, Zhang Z, Xia C. Long non-coding RNA LINC00240 promotes gastric cancer progression via modulating miR-338-5p/METTL3 axis. Bioengineered. 2021;12(2):9678–91.CrossRefPubMedPubMedCentral Wang G, Zhang Z, Xia C. Long non-coding RNA LINC00240 promotes gastric cancer progression via modulating miR-338-5p/METTL3 axis. Bioengineered. 2021;12(2):9678–91.CrossRefPubMedPubMedCentral
7.
go back to reference Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 2020;19(1):9.CrossRefPubMedPubMedCentral Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 2020;19(1):9.CrossRefPubMedPubMedCentral
8.
go back to reference Zhao SY, Wang Z, Wu XB, Zhang S, Chen Q, Wang DD, Tan QF. CERS6-AS1 contributes to the malignant phenotypes of colorectal cancer cells by interacting with miR-15b-5p to regulate SPTBN2. Kaohsiung J Med Sci. 2022;38(5):403–14.CrossRefPubMed Zhao SY, Wang Z, Wu XB, Zhang S, Chen Q, Wang DD, Tan QF. CERS6-AS1 contributes to the malignant phenotypes of colorectal cancer cells by interacting with miR-15b-5p to regulate SPTBN2. Kaohsiung J Med Sci. 2022;38(5):403–14.CrossRefPubMed
9.
10.
go back to reference Tran TQ, Lowman XH, Kong M. Molecular pathways: Metabolic Control of Histone Methylation and gene expression in Cancer. Clin Cancer Res. 2017;23(15):4004–9.CrossRefPubMedPubMedCentral Tran TQ, Lowman XH, Kong M. Molecular pathways: Metabolic Control of Histone Methylation and gene expression in Cancer. Clin Cancer Res. 2017;23(15):4004–9.CrossRefPubMedPubMedCentral
11.
go back to reference Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Xie W, Yang D. lncRNA Epigenetic Landscape Analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in Cancer. Cancer Cell. 2018;33(4):706–720e709.CrossRefPubMedPubMedCentral Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Xie W, Yang D. lncRNA Epigenetic Landscape Analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in Cancer. Cancer Cell. 2018;33(4):706–720e709.CrossRefPubMedPubMedCentral
12.
go back to reference Lv W, Wang Y, Zhao C, Tan Y, Xiong M, Yi Y, He X, Ren Y, Wu Y, Zhang Q. Identification and validation of m6A-Related lncRNA signature as potential predictive biomarkers in breast Cancer. Front Oncol. 2021;11:745719.CrossRefPubMedPubMedCentral Lv W, Wang Y, Zhao C, Tan Y, Xiong M, Yi Y, He X, Ren Y, Wu Y, Zhang Q. Identification and validation of m6A-Related lncRNA signature as potential predictive biomarkers in breast Cancer. Front Oncol. 2021;11:745719.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Lin W, Chen L, Zhang H, Qiu X, Huang Q, Wan F, Le Z, Geng S, Zhang A, Qiu S, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14(1):265.CrossRefPubMedPubMedCentral Lin W, Chen L, Zhang H, Qiu X, Huang Q, Wan F, Le Z, Geng S, Zhang A, Qiu S, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14(1):265.CrossRefPubMedPubMedCentral
15.
go back to reference Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, Mei Y, Tan Y, Li X, Zeng Z, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 2020;14(6):1282–96.CrossRefPubMedPubMedCentral Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, Mei Y, Tan Y, Li X, Zeng Z, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 2020;14(6):1282–96.CrossRefPubMedPubMedCentral
16.
go back to reference Feng ZH, Liang YP, Cen JJ, Yao HH, Lin HS, Li JY, Liang H, Wang Z, Deng Q, Cao JZ, et al. m6A-immune-related lncRNA prognostic signature for predicting immune landscape and prognosis of bladder cancer. J Transl Med. 2022;20(1):492.CrossRefPubMedPubMedCentral Feng ZH, Liang YP, Cen JJ, Yao HH, Lin HS, Li JY, Liang H, Wang Z, Deng Q, Cao JZ, et al. m6A-immune-related lncRNA prognostic signature for predicting immune landscape and prognosis of bladder cancer. J Transl Med. 2022;20(1):492.CrossRefPubMedPubMedCentral
17.
go back to reference Tu Z, Wu L, Wang P, Hu Q, Tao C, Li K, Huang K, Zhu X. N6-Methylandenosine-related lncRNAs are potential biomarkers for Predicting the overall survival of Lower-Grade Glioma patients. Front Cell Dev Biol. 2020;8:642.CrossRefPubMedPubMedCentral Tu Z, Wu L, Wang P, Hu Q, Tao C, Li K, Huang K, Zhu X. N6-Methylandenosine-related lncRNAs are potential biomarkers for Predicting the overall survival of Lower-Grade Glioma patients. Front Cell Dev Biol. 2020;8:642.CrossRefPubMedPubMedCentral
18.
go back to reference Wu Q, Chen L, Miao D, Jin Y, Zhu Z. Prognostic signature based on m6A-related lncRNAs to predict overall survival in pancreatic ductal adenocarcinoma. Sci Rep. 2022;12(1):3079.CrossRefPubMedPubMedCentral Wu Q, Chen L, Miao D, Jin Y, Zhu Z. Prognostic signature based on m6A-related lncRNAs to predict overall survival in pancreatic ductal adenocarcinoma. Sci Rep. 2022;12(1):3079.CrossRefPubMedPubMedCentral
19.
go back to reference Zhao X, Liu X, Cui L. Development of a five-protein signature for predicting the prognosis of head and neck squamous cell carcinoma. Aging. 2020;12(19):19740–55.CrossRefPubMedPubMedCentral Zhao X, Liu X, Cui L. Development of a five-protein signature for predicting the prognosis of head and neck squamous cell carcinoma. Aging. 2020;12(19):19740–55.CrossRefPubMedPubMedCentral
20.
go back to reference Xu F, He L, Zhan X, Chen J, Xu H, Huang X, Li Y, Zheng X, Lin L, Chen Y. DNA methylation-based lung adenocarcinoma subtypes can predict prognosis, recurrence, and immunotherapeutic implications. Aging. 2020;12(24):25275–93.CrossRefPubMedPubMedCentral Xu F, He L, Zhan X, Chen J, Xu H, Huang X, Li Y, Zheng X, Lin L, Chen Y. DNA methylation-based lung adenocarcinoma subtypes can predict prognosis, recurrence, and immunotherapeutic implications. Aging. 2020;12(24):25275–93.CrossRefPubMedPubMedCentral
21.
go back to reference Xu F, Zhan X, Zheng X, Xu H, Li Y, Huang X, Lin L, Chen Y. A signature of immune-related gene pairs predicts oncologic outcomes and response to immunotherapy in lung adenocarcinoma. Genomics. 2020;112(6):4675–83.CrossRefPubMed Xu F, Zhan X, Zheng X, Xu H, Li Y, Huang X, Lin L, Chen Y. A signature of immune-related gene pairs predicts oncologic outcomes and response to immunotherapy in lung adenocarcinoma. Genomics. 2020;112(6):4675–83.CrossRefPubMed
22.
go back to reference Wu Z, Wang M, Liu Q, Liu Y, Zhu K, Chen L, Guo H, Li Y, Shi B. Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer. Int J Med Sci. 2020;17(1):89–96.CrossRefPubMedPubMedCentral Wu Z, Wang M, Liu Q, Liu Y, Zhu K, Chen L, Guo H, Li Y, Shi B. Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer. Int J Med Sci. 2020;17(1):89–96.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.CrossRefPubMedPubMedCentral Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.CrossRefPubMedPubMedCentral
25.
go back to reference Xiao Z, Su Z, Han S, Huang J, Lin L, Shuai X. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 2020;6(6):eaay7785.CrossRefPubMedPubMedCentral Xiao Z, Su Z, Han S, Huang J, Lin L, Shuai X. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 2020;6(6):eaay7785.CrossRefPubMedPubMedCentral
26.
go back to reference Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.CrossRefPubMedPubMedCentral Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.CrossRefPubMedPubMedCentral
27.
go back to reference Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the transcriptome: m(6)A-Binding proteins. Trends Cell Biol. 2018;28(2):113–27.CrossRefPubMed Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the transcriptome: m(6)A-Binding proteins. Trends Cell Biol. 2018;28(2):113–27.CrossRefPubMed
28.
go back to reference Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, Li LF, Cheng YD, Duan CJ, Zhang CF. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis. 2022;13(7):657.CrossRefPubMedPubMedCentral Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, Li LF, Cheng YD, Duan CJ, Zhang CF. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis. 2022;13(7):657.CrossRefPubMedPubMedCentral
29.
go back to reference Li B, Zhao R, Qiu W, Pan Z, Zhao S, Qi Y, Qiu J, Zhang S, Guo Q, Fan Y et al. The N(6)-methyladenosine-mediated lncRNA WEE2-AS1 promotes glioblastoma progression by stabilizing RPN2. Theranostics 2022, 12(14):6363–6379. Li B, Zhao R, Qiu W, Pan Z, Zhao S, Qi Y, Qiu J, Zhang S, Guo Q, Fan Y et al. The N(6)-methyladenosine-mediated lncRNA WEE2-AS1 promotes glioblastoma progression by stabilizing RPN2. Theranostics 2022, 12(14):6363–6379.
31.
go back to reference Zhang N, Yu X, Sun H, Zhao Y, Wu J, Liu G. A prognostic and immunotherapy effectiveness model for pancreatic adenocarcinoma based on cuproptosis-related lncRNAs signature. Med (Baltim). 2023;102(42):e35167.CrossRef Zhang N, Yu X, Sun H, Zhao Y, Wu J, Liu G. A prognostic and immunotherapy effectiveness model for pancreatic adenocarcinoma based on cuproptosis-related lncRNAs signature. Med (Baltim). 2023;102(42):e35167.CrossRef
32.
go back to reference Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. 2018;15(5):428–37.CrossRefPubMedPubMedCentral Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. 2018;15(5):428–37.CrossRefPubMedPubMedCentral
33.
go back to reference Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, et al. KRAS-IRF2 Axis drives Immune suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35(4):559–572e557.CrossRefPubMedPubMedCentral Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, et al. KRAS-IRF2 Axis drives Immune suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35(4):559–572e557.CrossRefPubMedPubMedCentral
35.
go back to reference Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581(7806):100–5.CrossRefPubMedPubMedCentral Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581(7806):100–5.CrossRefPubMedPubMedCentral
36.
go back to reference Dong H, Hu L, Li W, Shi M, He L, Wang C, Hu Y, Wang H, Wen C, Liu H, et al. Pyrimethamine inhibits cell growth by inducing cell senescence and boosting CD8(+) T-cell mediated cytotoxicity in colorectal cancer. Mol Biol Rep. 2022;49(6):4281–92.CrossRefPubMedPubMedCentral Dong H, Hu L, Li W, Shi M, He L, Wang C, Hu Y, Wang H, Wen C, Liu H, et al. Pyrimethamine inhibits cell growth by inducing cell senescence and boosting CD8(+) T-cell mediated cytotoxicity in colorectal cancer. Mol Biol Rep. 2022;49(6):4281–92.CrossRefPubMedPubMedCentral
37.
go back to reference Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget. 2017;8(59):100113–27.CrossRefPubMedPubMedCentral Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget. 2017;8(59):100113–27.CrossRefPubMedPubMedCentral
Metadata
Title
Identification of a novel m6A-related lncRNAs signature and immunotherapeutic drug sensitivity in pancreatic adenocarcinoma
Authors
Xia-Qing Li
Shi-Qi Yin
Lin Chen
Aziguli Tulamaiti
Shu-Yu Xiao
Xue-Li Zhang
Lei Shi
Xiao-Cao Miao
Yan Yang
Xin Xing
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11885-8

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine