Skip to main content
Top
Published in: Calcified Tissue International 1/2020

01-07-2020 | Original Research

Identification of a 22 bp DNA cis Element that Plays a Critical Role in Colony Stimulating Factor 1-Dependent Transcriptional Activation of the SPHK1 Gene

Authors: Gang Qing Yao, Meiling Zhu, Joanne Walker, Karl Insogna

Published in: Calcified Tissue International | Issue 1/2020

Login to get access

Abstract

Sphingosine-1-phosphate (S1P) is an anabolic clastokine. Colony Stimulating Factor 1 (CSF1) induces expression of the rate limiting enzyme required for S1P synthesis, sphingosine kinase 1 (SPHK1) in bone in vivo, and in osteoclasts in vitro. To study the mechanism of CSF1-induced SPHK1 gene expression, a 2608 bp fragment of the murine SPHK1 gene (− 2497 to + 111 bp relative to the transcription start site) was cloned and transfected into pZen cells (murine fibroblasts engineered to express c-fms). SPHK1 promoter activity was assessed using a dual-luciferase reporter assay system. By analyzing a series of 5′-deletions, a CSF1-responsive region was identified in the region − 1250 to − 1016 bp. To define putative DNA binding site(s) in this fragment, two biotin-labeled fragments that completely overlapped this region were generated, one 163 bp in length (− 1301 to − 1139) and one 169 bp in length (− 1157 to − 989). EMSAs revealed the 163 bp fragment as the target for protein binding. Using EMSAs, the nuclear protein binding region was further narrowed to an 85 bp fragment, (− 1223 to − 1139). Using a series of unlabeled DNA sequences as “cold competitors” in EMSAs, a 22 bp sequence is identified as the smallest fragment that could successfully compete away protein binding. The same 22 bp sequence also competed DNA binding in EMSAs using nuclear protein isolated from primary murine osteoclasts. A full-length wild-type SPHK1 promoter and an SPHK1 promoter in which the ATGGGGG motif was mutated were subsequently expressed in pZen cells. Mutating this ATGGGGG motif nearly completely abrogated the ability of CSF1 to activate the promoter. Although two transcription factors, KLF6 and Sp1 have been reported to bind to this sequence, supershift EMSAs failed to detect either among the proteins bound to the 85 bp DNA fragment.
Literature
1.
go back to reference Abboud SL, Ghosh-Choudhury N, Liu LC, Shen V, Woodruff K (2003) Osteoblast-specific targeting of soluble colony-stimulating factor-1 increases cortical bone thickness in mice. J Bone Miner Res 18:1386–1394CrossRef Abboud SL, Ghosh-Choudhury N, Liu LC, Shen V, Woodruff K (2003) Osteoblast-specific targeting of soluble colony-stimulating factor-1 increases cortical bone thickness in mice. J Bone Miner Res 18:1386–1394CrossRef
2.
go back to reference Lloyd SA, Yuan YY, Simske SJ, Riffle SE, Ferguson VL, Bateman TA (2009) Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction. J Bone Miner Metab 27:546–554CrossRef Lloyd SA, Yuan YY, Simske SJ, Riffle SE, Ferguson VL, Bateman TA (2009) Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction. J Bone Miner Metab 27:546–554CrossRef
3.
go back to reference Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Lüth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Investig 123:666–681PubMed Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Lüth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Investig 123:666–681PubMed
4.
go back to reference Keller J, Catala-Lehnen P, Huebner AK, Jeschke A, Heckt T, Lueth A, Krause M, Koehne T, Albers J, Schulze J, Schilling S, Haberland M, Denninger H, Neven M, Hermans-Borgmeyer I, Streichert T, Breer S, Barvencik F, Levkau B, Rathkolb B, Wolf E, Calzada-Wack J, Neff F, Gailus-Durner V, Fuchs H, de Angelis MH, Klutmann S, Tsourdi E, Hofbauer LC, Kleuser B, Chun J, Schinke T, Amling M (2014) Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun 5:5215CrossRef Keller J, Catala-Lehnen P, Huebner AK, Jeschke A, Heckt T, Lueth A, Krause M, Koehne T, Albers J, Schulze J, Schilling S, Haberland M, Denninger H, Neven M, Hermans-Borgmeyer I, Streichert T, Breer S, Barvencik F, Levkau B, Rathkolb B, Wolf E, Calzada-Wack J, Neff F, Gailus-Durner V, Fuchs H, de Angelis MH, Klutmann S, Tsourdi E, Hofbauer LC, Kleuser B, Chun J, Schinke T, Amling M (2014) Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun 5:5215CrossRef
5.
go back to reference Gandy KA, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. In: Gulbins E, Petrache I (eds) Sphingolipids in disease (handbook of experimental pharmacology). Springer, Wien Gandy KA, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. In: Gulbins E, Petrache I (eds) Sphingolipids in disease (handbook of experimental pharmacology). Springer, Wien
6.
go back to reference Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22:5491–5500CrossRef Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22:5491–5500CrossRef
7.
go back to reference Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H (2012) Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 423:200–205CrossRef Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H (2012) Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 423:200–205CrossRef
8.
go back to reference Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307CrossRef Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307CrossRef
9.
go back to reference Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ (2013) Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 288:5398–5406CrossRef Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ (2013) Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 288:5398–5406CrossRef
11.
go back to reference Yao C, Yao GQ, Sun BH, Zhang C, Tommasini SM, Insogna K (2014) The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis. J Biol Chem 289:6775–6790CrossRef Yao C, Yao GQ, Sun BH, Zhang C, Tommasini SM, Insogna K (2014) The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis. J Biol Chem 289:6775–6790CrossRef
12.
go back to reference Reedijk M, Liu XQ, Pawson T (1990) Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Mol Cell Biol 10:5601–5608CrossRef Reedijk M, Liu XQ, Pawson T (1990) Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Mol Cell Biol 10:5601–5608CrossRef
13.
go back to reference Weir EC, Horowitz MC, Baron R, Centrella M, Kacinski BM, Insogna KL (1993) Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Miner Res 8:1507–1518CrossRef Weir EC, Horowitz MC, Baron R, Centrella M, Kacinski BM, Insogna KL (1993) Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Miner Res 8:1507–1518CrossRef
14.
go back to reference Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942CrossRef Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942CrossRef
15.
go back to reference Zhao JL, Austen KF, Lam BK (2000) Cell-specific transcription of leukotriene C(4) synthase involves a Kruppel-like transcription factor and Sp1. J Biol Chem 275:8903–8910CrossRef Zhao JL, Austen KF, Lam BK (2000) Cell-specific transcription of leukotriene C(4) synthase involves a Kruppel-like transcription factor and Sp1. J Biol Chem 275:8903–8910CrossRef
16.
go back to reference Lassen NE, Andersen TL, Ploen GG, Soe K, Hauge EM, Harving S, Eschen GET, Delaisse JM (2017) Coupling of bone resorption and formation in real time: new knowledge gained from human haversian BMUs. J Bone Miner Res 32:1395–1405CrossRef Lassen NE, Andersen TL, Ploen GG, Soe K, Hauge EM, Harving S, Eschen GET, Delaisse JM (2017) Coupling of bone resorption and formation in real time: new knowledge gained from human haversian BMUs. J Bone Miner Res 32:1395–1405CrossRef
17.
go back to reference Simms N, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bone Key Rep 3:481 Simms N, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bone Key Rep 3:481
18.
go back to reference Drissi H, Sanjay A (2016) The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem 117:1753–1756CrossRef Drissi H, Sanjay A (2016) The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem 117:1753–1756CrossRef
19.
go back to reference Crane JL, Cao X (2014) Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl) 92:107–115CrossRef Crane JL, Cao X (2014) Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl) 92:107–115CrossRef
20.
go back to reference Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121CrossRef Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121CrossRef
21.
go back to reference Kim JH, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52:12–17CrossRef Kim JH, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52:12–17CrossRef
22.
go back to reference Hofstetter W, Wetterwald A, Cecchini MC, Felix R, Fleisch H, Mueller C (1992) Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts. Proc Natl Acad Sci USA 89:9637–9641CrossRef Hofstetter W, Wetterwald A, Cecchini MC, Felix R, Fleisch H, Mueller C (1992) Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts. Proc Natl Acad Sci USA 89:9637–9641CrossRef
23.
go back to reference Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K (2000) Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141:2129–2138CrossRef Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K (2000) Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141:2129–2138CrossRef
24.
go back to reference Bryan L, Kordula T, Spiegel S, Milstien S (2008) Regulation and functions of sphingosine kinases in the brain. Biochim Biophys Acta 1781:459–466CrossRef Bryan L, Kordula T, Spiegel S, Milstien S (2008) Regulation and functions of sphingosine kinases in the brain. Biochim Biophys Acta 1781:459–466CrossRef
Metadata
Title
Identification of a 22 bp DNA cis Element that Plays a Critical Role in Colony Stimulating Factor 1-Dependent Transcriptional Activation of the SPHK1 Gene
Authors
Gang Qing Yao
Meiling Zhu
Joanne Walker
Karl Insogna
Publication date
01-07-2020
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2020
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-020-00685-4

Other articles of this Issue 1/2020

Calcified Tissue International 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine