Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Ibrutinib | Primary research

The Ibr-7 derivative of ibrutinib radiosensitizes pancreatic cancer cells by downregulating p-EGFR

Authors: Biqin Tan, Rong Dong, Bo Zhang, Youyou Yan, Qingyu Li, Fei Wang, Nengming Lin

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Radiotherapy is one of the main treatments for pancreatic cancer, but radiation resistance limits its clinical application. As a result, novel therapeutic agents to improve radiosensitivity are urgently needed. This study aimed to investigate the effect of Ibr-7 (a derivative of ibrutinib) on the radiosensitivity of human pancreatic cancer cells.

Methods

The effect of Ibr-7 on pancreatic cancer cell proliferation was detected by CCK-8 assays. Radiosensitivity was assessed by clonogenic formation assays. Cell cycle and cell apoptosis were analysed by flow cytometry. DNA damage was evaluated by immunofluorescence analysis. The expression levels of PARP, Cleaved caspase 3, p-EGFR and EGFR were determined by western blot.

Results

Ibr-7 showed an anti-proliferative effect on PANC-1 and Capan2 cells in a dose- and time-dependent manner. Ibr-7 (2 μmol/L) enhanced the effect of radiation on PANC-1 and Capan2 cells. Further findings showed that this combination enhanced G2/M phase arrest and increased cell apoptosis. Additional molecular mechanism studies revealed that the expression of p-EGFR was decreased by Ibr-7 alone or in combination with radiation. Overexpression of p-EGFR reversed the cell apoptosis induced by Ibr-7 combined with radiation. Moreover, the expression of γ-H2AX was significantly decreased in the Ibr-7 plus radiation group.

Conclusions

Our study indicated the potential application of Ibr-7 as a highly effective radiosensitizer for the treatment of pancreatic cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA A Cancer J Clin. 2019;69(5):363–85.CrossRef Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA A Cancer J Clin. 2019;69(5):363–85.CrossRef
2.
go back to reference Chu LC, Goggins MG, Fishman EK. Diagnosis and detection of pancreatic cancer. Cancer J. 2017;23(6):333–42.CrossRef Chu LC, Goggins MG, Fishman EK. Diagnosis and detection of pancreatic cancer. Cancer J. 2017;23(6):333–42.CrossRef
3.
go back to reference Arasaradnam RP, Wicaksono A, O’Brien H, Kocher HM, Covington JA, Crnogorac-Jurcevic T. Noninvasive diagnosis of pancreatic cancer through detection of volatile organic compounds in urine. Gastroenterology. 2018;154(3):485–7.CrossRef Arasaradnam RP, Wicaksono A, O’Brien H, Kocher HM, Covington JA, Crnogorac-Jurcevic T. Noninvasive diagnosis of pancreatic cancer through detection of volatile organic compounds in urine. Gastroenterology. 2018;154(3):485–7.CrossRef
4.
go back to reference Xu X, Xiao Y, Hong B, Hao B, Qian Y. Combined detection of CA19-9 and B7-H4 in the diagnosis and prognosis of pancreatic cancer. Cancer Biomark Sec A Dis Mark. 2019;25(3):251–7.CrossRef Xu X, Xiao Y, Hong B, Hao B, Qian Y. Combined detection of CA19-9 and B7-H4 in the diagnosis and prognosis of pancreatic cancer. Cancer Biomark Sec A Dis Mark. 2019;25(3):251–7.CrossRef
5.
go back to reference Zhou H, Zhu Y, Wei F, Shao Y, Pan J, Wang G, Xu K, Cheng Y. Significance of MUC2 gene methylation detection in pancreatic cancer diagnosis. Pancreatology. 2019;19(8):1049–53.CrossRef Zhou H, Zhu Y, Wei F, Shao Y, Pan J, Wang G, Xu K, Cheng Y. Significance of MUC2 gene methylation detection in pancreatic cancer diagnosis. Pancreatology. 2019;19(8):1049–53.CrossRef
6.
go back to reference Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim et Biophys Acta Rev Cancer. 2017;1868(1):69–92.CrossRef Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim et Biophys Acta Rev Cancer. 2017;1868(1):69–92.CrossRef
7.
go back to reference Nguyen AM, Zhou J, Sicairos B, Sonney S, Du Y. Upregulation of CD73 confers acquired radioresistance and is required for maintaining irradiation-selected pancreatic cancer cells in a mesenchymal state. Mol Cell Proteomics. 2020;19(2):375–89.CrossRef Nguyen AM, Zhou J, Sicairos B, Sonney S, Du Y. Upregulation of CD73 confers acquired radioresistance and is required for maintaining irradiation-selected pancreatic cancer cells in a mesenchymal state. Mol Cell Proteomics. 2020;19(2):375–89.CrossRef
8.
go back to reference Jiang YH, You KY, Bi ZF, Li LT, Mo HQ, Liu YM. The relationship between the radioresistance of pancreatic cancer cell SW1990 and the induction of the Epithelial-Mesenchymal Transition: an in vitro study. Zhonghua yi xue za zhi. 2018;98(12):939–43.PubMed Jiang YH, You KY, Bi ZF, Li LT, Mo HQ, Liu YM. The relationship between the radioresistance of pancreatic cancer cell SW1990 and the induction of the Epithelial-Mesenchymal Transition: an in vitro study. Zhonghua yi xue za zhi. 2018;98(12):939–43.PubMed
9.
go back to reference Deeks ED. Ibrutinib: a review in chronic lymphocytic leukaemia. Drugs. 2017;77(2):225–36.CrossRef Deeks ED. Ibrutinib: a review in chronic lymphocytic leukaemia. Drugs. 2017;77(2):225–36.CrossRef
10.
go back to reference Gao W, Wang M, Wang L, Lu H, Wu S, Dai B, Ou Z, Zhang L, Heymach JV, Gold KA et al. Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells. J Natl Cancer Inst. 2014;106(9). Gao W, Wang M, Wang L, Lu H, Wu S, Dai B, Ou Z, Zhang L, Heymach JV, Gold KA et al. Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells. J Natl Cancer Inst. 2014;106(9).
11.
go back to reference Kim ES, Dhillon S. Ibrutinib: a review of its use in patients with mantle cell lymphoma or chronic lymphocytic leukaemia. Drugs. 2015;75(7):769–76.CrossRef Kim ES, Dhillon S. Ibrutinib: a review of its use in patients with mantle cell lymphoma or chronic lymphocytic leukaemia. Drugs. 2015;75(7):769–76.CrossRef
12.
go back to reference Hershkovitz-Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. Br J Haematol. 2018;181(3):306–19.CrossRef Hershkovitz-Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. Br J Haematol. 2018;181(3):306–19.CrossRef
13.
go back to reference de Porto AP, Liu Z, de Beer R, Florquin S, de Boer OJ, Hendriks RW, van der Poll T, de Vos AF. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol Med. 2019;25(1):3.CrossRef de Porto AP, Liu Z, de Beer R, Florquin S, de Boer OJ, Hendriks RW, van der Poll T, de Vos AF. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol Med. 2019;25(1):3.CrossRef
14.
go back to reference Byrd JC, Hillmen P, O’Brien S, Barrientos JC, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Barr PM, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031–42.CrossRef Byrd JC, Hillmen P, O’Brien S, Barrientos JC, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Barr PM, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031–42.CrossRef
15.
go back to reference Zhang B, Wang L, Zhang Q, Yan Y, Jiang H, Hu R, Zhou X, Liu X, Feng J, Lin N. The Ibr-7 derivative of ibrutinib exhibits enhanced cytotoxicity against non-small cell lung cancer cells via targeting of mTORC1/S6 signaling. Mol Oncol. 2019;13(4):946–58.CrossRef Zhang B, Wang L, Zhang Q, Yan Y, Jiang H, Hu R, Zhou X, Liu X, Feng J, Lin N. The Ibr-7 derivative of ibrutinib exhibits enhanced cytotoxicity against non-small cell lung cancer cells via targeting of mTORC1/S6 signaling. Mol Oncol. 2019;13(4):946–58.CrossRef
16.
go back to reference Yan Youyou ZB, Zhang Q, Zhou D, Lin N. Study on the inhibitory effects and mechanism of new small molecular kinase inhibitors Ibr-7 on human pancreatic cancer Capan-2 cells (in Chinese). China Pharmacy. 2019;30(4):499–506. Yan Youyou ZB, Zhang Q, Zhou D, Lin N. Study on the inhibitory effects and mechanism of new small molecular kinase inhibitors Ibr-7 on human pancreatic cancer Capan-2 cells (in Chinese). China Pharmacy. 2019;30(4):499–506.
17.
go back to reference Tan B, Huang Y, Zhang B, Lin N. The effect of ibrutinib on radiosensitivity in pancreatic cancer cells by targeting EGFR/AKT/mTOR signaling pathway. Biomed Pharmacother. 2020;128:110133.CrossRef Tan B, Huang Y, Zhang B, Lin N. The effect of ibrutinib on radiosensitivity in pancreatic cancer cells by targeting EGFR/AKT/mTOR signaling pathway. Biomed Pharmacother. 2020;128:110133.CrossRef
18.
go back to reference Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, Yun YS, Pyo H. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res. 2005;65(20):9501–9.CrossRef Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, Yun YS, Pyo H. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res. 2005;65(20):9501–9.CrossRef
19.
go back to reference Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.CrossRef Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.CrossRef
20.
go back to reference Treon SP, Castillo JJ, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML, Meid K, Yang G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135(21):1912–5.CrossRef Treon SP, Castillo JJ, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML, Meid K, Yang G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135(21):1912–5.CrossRef
21.
go back to reference Mosna K, Ladicka M, Drgona L, Vranovska M, Hojsikova I, Tomasova R, Danihel L Jr, Kyselovic J, Babal P. Ibrutinib treatment of mantle cell lymphoma complicated by progressive multifocal leukoencephalopathy. Int J Clin Pharmacol Ther. 2020;58(6):343–50.CrossRef Mosna K, Ladicka M, Drgona L, Vranovska M, Hojsikova I, Tomasova R, Danihel L Jr, Kyselovic J, Babal P. Ibrutinib treatment of mantle cell lymphoma complicated by progressive multifocal leukoencephalopathy. Int J Clin Pharmacol Ther. 2020;58(6):343–50.CrossRef
22.
go back to reference Lucas F, Larkin K, Gregory CT, Orwick S, Doong TJ, Lozanski A, Lozanski G, Misra S, Ngankeu A, Ozer HG, et al. Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations. Blood. 2020;135:2192–5.CrossRef Lucas F, Larkin K, Gregory CT, Orwick S, Doong TJ, Lozanski A, Lozanski G, Misra S, Ngankeu A, Ozer HG, et al. Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations. Blood. 2020;135:2192–5.CrossRef
23.
go back to reference Kater AP, Melenhorst JJ. CAR-T and ibrutinib vs CLL: sequential or simultaneous? Blood. 2020;135(19):1611–2.CrossRef Kater AP, Melenhorst JJ. CAR-T and ibrutinib vs CLL: sequential or simultaneous? Blood. 2020;135(19):1611–2.CrossRef
24.
go back to reference Qiu Q, Li C, Song Y, Shi T, Luo X, Zhang H, Hu L, Yan X, Zheng H, Liu M, et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater. 2019;92:184–95.CrossRef Qiu Q, Li C, Song Y, Shi T, Luo X, Zhang H, Hu L, Yan X, Zheng H, Liu M, et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater. 2019;92:184–95.CrossRef
26.
go back to reference Chen J, Kinoshita T, Sukbuntherng J, Chang BY, Elias L. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth. Mol Cancer Ther. 2016;15(12):2835–44.CrossRef Chen J, Kinoshita T, Sukbuntherng J, Chang BY, Elias L. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth. Mol Cancer Ther. 2016;15(12):2835–44.CrossRef
27.
go back to reference Hong D, Rasco D, Veeder M, Luke JJ, Chandler J, Balmanoukian A, George TJ, Munster P, Berlin JD, Gutierrez M, et al. A phase 1b/2 study of the Bruton tyrosine kinase inhibitor ibrutinib and the PD-L1 inhibitor durvalumab in patients with pretreated solid tumors. Oncology. 2019;97(2):102–11.CrossRef Hong D, Rasco D, Veeder M, Luke JJ, Chandler J, Balmanoukian A, George TJ, Munster P, Berlin JD, Gutierrez M, et al. A phase 1b/2 study of the Bruton tyrosine kinase inhibitor ibrutinib and the PD-L1 inhibitor durvalumab in patients with pretreated solid tumors. Oncology. 2019;97(2):102–11.CrossRef
28.
go back to reference Wei L, Su YK, Lin CM, Chao TY, Huang SP, Huynh TT, Jan HJ, Whang-Peng J, Chiou JF, Wu AT, et al. Preclinical investigation of ibrutinib, a Bruton’s kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes. Oncotarget. 2016;7(43):69961–75.CrossRef Wei L, Su YK, Lin CM, Chao TY, Huang SP, Huynh TT, Jan HJ, Whang-Peng J, Chiou JF, Wu AT, et al. Preclinical investigation of ibrutinib, a Bruton’s kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes. Oncotarget. 2016;7(43):69961–75.CrossRef
29.
go back to reference Anakura M, Nachankar A, Kobayashi D, Amornwichet N, Hirota Y, Shibata A, Oike T, Nakano T. Radiosensitivity differences between EGFR mutant and wild-type lung cancer cells are larger at lower doses. Int J Mol Sci. 2019;20(15):3635.CrossRef Anakura M, Nachankar A, Kobayashi D, Amornwichet N, Hirota Y, Shibata A, Oike T, Nakano T. Radiosensitivity differences between EGFR mutant and wild-type lung cancer cells are larger at lower doses. Int J Mol Sci. 2019;20(15):3635.CrossRef
30.
go back to reference Poschau M, Dickreuter E, Singh-Muller J, Zscheppang K, Eke I, Liersch T, Cordes N. EGFR and beta1-integrin targeting differentially affect colorectal carcinoma cell radiosensitivity and invasion. Radiother Oncol. 2015;116(3):510–6.CrossRef Poschau M, Dickreuter E, Singh-Muller J, Zscheppang K, Eke I, Liersch T, Cordes N. EGFR and beta1-integrin targeting differentially affect colorectal carcinoma cell radiosensitivity and invasion. Radiother Oncol. 2015;116(3):510–6.CrossRef
31.
go back to reference Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.CrossRef Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.CrossRef
32.
go back to reference Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662–9.CrossRef Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662–9.CrossRef
33.
go back to reference Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010;16(18):4532–42.CrossRef Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010;16(18):4532–42.CrossRef
Metadata
Title
The Ibr-7 derivative of ibrutinib radiosensitizes pancreatic cancer cells by downregulating p-EGFR
Authors
Biqin Tan
Rong Dong
Bo Zhang
Youyou Yan
Qingyu Li
Fei Wang
Nengming Lin
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01548-6

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine