Skip to main content
Top
Published in: Experimental Brain Research 1/2003

01-09-2003 | Research Article

Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans

Authors: Toshitaka Kimura, Kentaro Yamanaka, Daichi Nozaki, Kimitaka Nakazawa, Tasuku Miyoshi, Masami Akai, Tatsuyuki Ohtsuki

Published in: Experimental Brain Research | Issue 1/2003

Login to get access

Abstract

Many studies have demonstrated that the firing behavior of single motor units varies in a nonlinear manner to the exerted torque during gradual muscle contraction and relaxation. However, it is unclear whether corticospinal excitability has such a hysteresis-like feature. In this study, we examined corticospinal excitability using transcranial magnetic stimulation (TMS) during gradual muscle contraction and relaxation for torque regulation in elbow flexor muscles. Eight healthy male subjects performed two different isometric elbow flexion tasks, namely, sinusoidal and tonic torque exertion tasks. In the sinusoidal task, the subjects sinusoidally increased and decreased the isometric elbow flexion torque (range of 0–15% of maximum voluntary contraction) at three different frequencies (0.33, 0.17, and 0.08 Hz). For each ascending (contraction: CON) and descending (relaxation: REL) period of the exerted torque, a single TMS was applied at 5 phases. In the tonic task, the elbow flexion torque was tonically exerted at 7 levels in a similar range as that in the sinusoidal task. EMG activities were recorded from the agonists, the biceps brachii (BB) and brachioradialis (BRD) muscles, and an antagonist, the triceps brachii (TB) muscle. The results demonstrated that the EMG activities of both the agonists and antagonist were larger in the CON period than the REL period, even when the exerted torque was the same. However, there were no significant differences in EMG activation profiles among the different frequencies of contraction. In BB and BRD, the motor-evoked potential (MEP) elicited by the TMS was also greater in the CON period than in the REL period. This CON-REL difference of MEP amplitudes was still observed when corrections were made for the increased EMG activities; that is, the MEP amplitudes to the identical EMG activities were greater in the CON period than in the REL period, and this phenomenon was more pronounced at higher frequencies. In addition, the degree to which sinusoidal MEPs exceeded tonic MEPs in the CON period and were smaller than tonic MEPs in the REL period became more pronounced at higher frequencies. On the other hand, there were significant correlations between the BB and BRD MEP amplitudes and the rate of change of elbow flexion/extension torque. These results indicate that corticospinal excitability during muscle contraction and relaxation has a neural hysteresis to the muscle activity, i.e., spinal motoneuronal activity, according to the rate of change of the exerted torque, i.e., muscle tension. This suggests that corticospinal excitability modulation depends not only on concurrent spinal motoneuronal activity and muscle tension but also on the time-series pattern of their changes during muscle contraction and relaxation.
Literature
go back to reference Amassian VE, Quirk GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401PubMed Amassian VE, Quirk GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401PubMed
go back to reference Binder-Macleod SA, Clamann HP (1989) Force output of cat motor units stimulated with trains of linearly varying frequency. J Neurophysiol 61:208–217PubMed Binder-Macleod SA, Clamann HP (1989) Force output of cat motor units stimulated with trains of linearly varying frequency. J Neurophysiol 61:208–217PubMed
go back to reference Brouwer B, Ashby P, Midroni G (1989) Excitability of corticospinal neurons during tonic muscle contractions in man. Exp Brain Res 74:649–652PubMed Brouwer B, Ashby P, Midroni G (1989) Excitability of corticospinal neurons during tonic muscle contractions in man. Exp Brain Res 74:649–652PubMed
go back to reference Burke RE, Rudomin P, Zajac FE (1976) The effect of activation history on tension production by individual muscle units. Brain Res 109:515–529PubMed Burke RE, Rudomin P, Zajac FE (1976) The effect of activation history on tension production by individual muscle units. Brain Res 109:515–529PubMed
go back to reference Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 9: S26-S32CrossRefPubMed Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 9: S26-S32CrossRefPubMed
go back to reference Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44:773–791PubMed Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44:773–791PubMed
go back to reference Cheney PD, Mewes K, Fetz EE (1988) Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells producing postspike facilitation of forelimb muscles in the behaving monkey. Behav Brain Res 28:181–191CrossRefPubMed Cheney PD, Mewes K, Fetz EE (1988) Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells producing postspike facilitation of forelimb muscles in the behaving monkey. Behav Brain Res 28:181–191CrossRefPubMed
go back to reference Collins DF, Burke D, Gandevia SC (2001) Large involuntary forces consistent with plateau-like behavior oh human motoneurons. J Neurosci 21:4059–4065PubMed Collins DF, Burke D, Gandevia SC (2001) Large involuntary forces consistent with plateau-like behavior oh human motoneurons. J Neurosci 21:4059–4065PubMed
go back to reference Collins DF, Burke D, Gandevia SC (2002) Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol (Lond) 538:289–301 Collins DF, Burke D, Gandevia SC (2002) Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol (Lond) 538:289–301
go back to reference Corcos DM, Chen C-M, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson's disease: rate of force generation and clinical status. Ann Neurol 39:79–88PubMed Corcos DM, Chen C-M, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson's disease: rate of force generation and clinical status. Ann Neurol 39:79–88PubMed
go back to reference De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol (Lond) 329:113–128 De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol (Lond) 329:113–128
go back to reference Denier van der Gon JJ, ter Haar Romeny BM, van Zuylen EJ (1985) Behavior of motor units of human arm muscles: differences between slow isometric contraction and relaxation. J Physiol (Lond) 359:107–118 Denier van der Gon JJ, ter Haar Romeny BM, van Zuylen EJ (1985) Behavior of motor units of human arm muscles: differences between slow isometric contraction and relaxation. J Physiol (Lond) 359:107–118
go back to reference Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol (Lond) 508:625–633 Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol (Lond) 508:625–633
go back to reference Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed
go back to reference Eckert R, Randall D, Augustine G (1988) Animal Physiology (3rd ed.). Freeman, New York, 329–367. Eckert R, Randall D, Augustine G (1988) Animal Physiology (3rd ed.). Freeman, New York, 329–367.
go back to reference Edman KAP, Elzinga G, Noble MIM (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol (Lond) 281:139–155 Edman KAP, Elzinga G, Noble MIM (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol (Lond) 281:139–155
go back to reference Flitney FW, Hirst DG (1978) Cross-bridge detachment and sarcomere 'give' during stretch of active frog's muscle. J Physiol (Lond) 276:449–465 Flitney FW, Hirst DG (1978) Cross-bridge detachment and sarcomere 'give' during stretch of active frog's muscle. J Physiol (Lond) 276:449–465
go back to reference Fukunaga T, Ito M, Ichinose Y, Kuno S, Kawakami Y, Fukashiro S (1996) Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J Appl Physiol 81:354–358 Fukunaga T, Ito M, Ichinose Y, Kuno S, Kawakami Y, Fukashiro S (1996) Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J Appl Physiol 81:354–358
go back to reference Gorassini MA, Bennett DJ, Yang JF (1998) Self-sustained firing of human motor units. Neurosci Lett 247:13–16CrossRefPubMed Gorassini MA, Bennett DJ, Yang JF (1998) Self-sustained firing of human motor units. Neurosci Lett 247:13–16CrossRefPubMed
go back to reference Gorassini M, Yang JF, Siu M, Bennett DJ (2002) Intrinsic activation of human motoneurons: possible contribution to motor unit excitation. J Neurophysiol 87:1850–1858PubMed Gorassini M, Yang JF, Siu M, Bennett DJ (2002) Intrinsic activation of human motoneurons: possible contribution to motor unit excitation. J Neurophysiol 87:1850–1858PubMed
go back to reference Grasso M, Mazzini L, Schieppati M (1996) Muscle relaxation in Parkinson's disease: a reaction time study. Mov Disord 11:411–420PubMed Grasso M, Mazzini L, Schieppati M (1996) Muscle relaxation in Parkinson's disease: a reaction time study. Mov Disord 11:411–420PubMed
go back to reference Hultborn H (1999) Plateau potentials and their role in regulating motoneuronal firing. Prog Brain Res 123:39–48PubMed Hultborn H (1999) Plateau potentials and their role in regulating motoneuronal firing. Prog Brain Res 123:39–48PubMed
go back to reference Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519 Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519
go back to reference Lavoie BA, Cody FWJ, Capaday C (1995) Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation. Exp Brain Res 103:97–107PubMed Lavoie BA, Cody FWJ, Capaday C (1995) Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation. Exp Brain Res 103:97–107PubMed
go back to reference Maertens de Noordhout A, Pepin JL, Gerard P, Delwaide PJ (1992) Facilitation of responses to motor cortex stimulation: effects of isometric voluntary contraction. Ann Neurol 32:365–370PubMed Maertens de Noordhout A, Pepin JL, Gerard P, Delwaide PJ (1992) Facilitation of responses to motor cortex stimulation: effects of isometric voluntary contraction. Ann Neurol 32:365–370PubMed
go back to reference Maier MA, Armand J, Kirkwood PA, Yang H-W, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296CrossRefPubMed Maier MA, Armand J, Kirkwood PA, Yang H-W, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12:281–296CrossRefPubMed
go back to reference Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol (Lond) 474:261–267 Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol (Lond) 474:261–267
go back to reference Nielsen J, Petersen N (1995) Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J Physiol (Lond) 484:777–789 Nielsen J, Petersen N (1995) Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J Physiol (Lond) 484:777–789
go back to reference Oga T, Honda M, Toma K, Murase N, Okada T, Hanakawa T, Sawamoto N, Nagamine T, Konishi J, Fukuyama H, Kaji R, Shibasaki H (2002) Abnormal cortical mechanisms of voluntary muscle relaxation in patients with writer's cramp: an fMRI study. Brain 125:895–903CrossRefPubMed Oga T, Honda M, Toma K, Murase N, Okada T, Hanakawa T, Sawamoto N, Nagamine T, Konishi J, Fukuyama H, Kaji R, Shibasaki H (2002) Abnormal cortical mechanisms of voluntary muscle relaxation in patients with writer's cramp: an fMRI study. Brain 125:895–903CrossRefPubMed
go back to reference Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 59:493–498PubMed Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 59:493–498PubMed
go back to reference Romaiguère P, Vedel J-P, Pagni S (1993) Comparison of fluctuations of motor unit recruitment and de-recruitment thresholds in man. Exp Brain Res 95:517–522PubMed Romaiguère P, Vedel J-P, Pagni S (1993) Comparison of fluctuations of motor unit recruitment and de-recruitment thresholds in man. Exp Brain Res 95:517–522PubMed
go back to reference Schieppati M, Crenna P (1984) From activity to rest: gating of excitatory autogenetic afferences from the relaxing muscle in man. Exp Brain Res 56:448–457PubMed Schieppati M, Crenna P (1984) From activity to rest: gating of excitatory autogenetic afferences from the relaxing muscle in man. Exp Brain Res 56:448–457PubMed
go back to reference Schieppati M, Crenna P (1985) Excitability of reciprocal and recurrent inhibitory pathways after voluntary muscle relaxation in man. Exp Brain Res 59:249–256PubMed Schieppati M, Crenna P (1985) Excitability of reciprocal and recurrent inhibitory pathways after voluntary muscle relaxation in man. Exp Brain Res 59:249–256PubMed
go back to reference Schieppati M, Poloni M, Nardone A (1985) Voluntary muscle release is not accompanied by H-reflex inhibition in patients with upper motoneuron lesions. Neurosci Lett 61:177–181CrossRefPubMed Schieppati M, Poloni M, Nardone A (1985) Voluntary muscle release is not accompanied by H-reflex inhibition in patients with upper motoneuron lesions. Neurosci Lett 61:177–181CrossRefPubMed
go back to reference Schieppati M, Nardone A, Mussazzi M (1986) Modulation of the Hoffmann reflex by rapid muscle contraction or release. Human Neurobiol 5:59–66 Schieppati M, Nardone A, Mussazzi M (1986) Modulation of the Hoffmann reflex by rapid muscle contraction or release. Human Neurobiol 5:59–66
go back to reference Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Nishizawa S, Konishi J, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19:3527–3534 Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Nishizawa S, Konishi J, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19:3527–3534
go back to reference Wing AM (1988) A comparison of the rate of pinch grip force increases and decreases in Parkinsonian bradykinesia. Neuropsychol 26:479–482CrossRef Wing AM (1988) A comparison of the rate of pinch grip force increases and decreases in Parkinsonian bradykinesia. Neuropsychol 26:479–482CrossRef
go back to reference Yamanaka K, Kimura T, Miyazaki M, Kawashima N, Nozaki D, Nakazawa K, Yano H, Yamamoto Y (2002) Human cortical activities during Go/NoGo tasks with opposite motor control paradigms. Exp Brain Res 142:301–307CrossRefPubMed Yamanaka K, Kimura T, Miyazaki M, Kawashima N, Nozaki D, Nakazawa K, Yano H, Yamamoto Y (2002) Human cortical activities during Go/NoGo tasks with opposite motor control paradigms. Exp Brain Res 142:301–307CrossRefPubMed
Metadata
Title
Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans
Authors
Toshitaka Kimura
Kentaro Yamanaka
Daichi Nozaki
Kimitaka Nakazawa
Tasuku Miyoshi
Masami Akai
Tatsuyuki Ohtsuki
Publication date
01-09-2003
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 1/2003
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1518-1

Other articles of this Issue 1/2003

Experimental Brain Research 1/2003 Go to the issue