Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2019

Open Access 01-12-2019 | Hypoxemia | Case report

Combined-modality therapy for pulmonary alveolar proteinosis in a remote setting: a case report

Authors: Dacia S. K. Boyce, John W. Lee, Phalgoon Shah, Judy H. Freeman, Matthew C. Aboudara, David C. Hostler

Published in: BMC Pulmonary Medicine | Issue 1/2019

Login to get access

Abstract

Background

Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of phospholipoproteinaceous material in the alveoli. The presentation is nonspecific but typically includes dyspnea; the spectrum of disease includes rapidly progressive hypoxic respiratory failure. Whole lung lavage (WLL) is the treatment of choice in symptomatic PAP, but transient worsening of oxygenation sometimes requires salvage modalities of support such as extracorporeal membrane oxygenation (ECMO). Granulocyte macrophage colony-stimulating factor (GM-CSF) plays a role in the pathophysiology of PAP. We highlight a case of severe PAP treated with exogenous GM-CSF and sequential lobar lavage due to the unavailability of salvage methods of oxygenation.

Case presentation

A 36 year old female was admitted with fevers, chills, and progressive dyspnea. On presentation she was tachypneic, tachycardic, and hypoxemic; labs revealed leukocytosis and lactic acidosis. Chest CT identified diffuse ground glass opacities in a ‘crazy-paving’ pattern. Following intubation due to impending respiratory failure, bronchoscopy with bronchoalveolar lavage was performed. The lavage return stained positive with Periodic Acid Schiff, confirming the diagnosis of PAP. Continued deterioration necessitated treatment; however, at this geographically remote center without ECMO services WLL was judged to carry significant risk. Nebulized GM-CSF was administered without significant improvement. Subcutaneous GM-CSF was administered and isolated subsegmental lavages of the bilateral upper lobes were performed, with rapid improvement in oxygenation. Additional sequential lobar lavage and continued GM-CSF therapy as an outpatient resulted in complete resolution of oxygen requirement and return to normal pulmonary physiology.

Conclusions

The autoimmune form of PAP is the most common, indicating that therapy with GM-CSF may play an important role for many patients. Treatment with WLL may be impractical in some clinical settings due to the expertise and salvage modalities required. Sequential lobar lavage requires less specialized expertise and may incur less risk of refractory hypoxemia. We posit that this combined-modality therapy is ideally suited to geographically-remote centers such as our own.
Literature
1.
go back to reference Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–39.CrossRef Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–39.CrossRef
2.
go back to reference Seymour JF, Presneill JJ. Pulmonary alveolar Proteinosis. Am J Respir Crit Care Med. 2002;166(2):215–35.CrossRef Seymour JF, Presneill JJ. Pulmonary alveolar Proteinosis. Am J Respir Crit Care Med. 2002;166(2):215–35.CrossRef
3.
go back to reference Borie R, Danel C, Debray M, Taille C, Dombret M, Aubier M, et al. Pulmonary alveolar proteinosis. Eur Respir Rev. 2011;20(120):98–107.CrossRef Borie R, Danel C, Debray M, Taille C, Dombret M, Aubier M, et al. Pulmonary alveolar proteinosis. Eur Respir Rev. 2011;20(120):98–107.CrossRef
4.
go back to reference Frazier AA, Franks TJ, Cooke EO, Mohammed TH, Pugatch RD, Galvin JR. Pulmonary alveolar Proteinosis. RadioGraphics. 2008;28(3):883–99.CrossRef Frazier AA, Franks TJ, Cooke EO, Mohammed TH, Pugatch RD, Galvin JR. Pulmonary alveolar Proteinosis. RadioGraphics. 2008;28(3):883–99.CrossRef
5.
go back to reference Altose MD, Hicks RE, Edwards MW Jr. Extracorporeal membrane oxygenation during bronchopulmonary lavage. Arch Surg. 1976;111(10):1148–53.CrossRef Altose MD, Hicks RE, Edwards MW Jr. Extracorporeal membrane oxygenation during bronchopulmonary lavage. Arch Surg. 1976;111(10):1148–53.CrossRef
6.
go back to reference Nicolini A, Barlascini C. Lobar flexible fiberoptic lung lavage: therapeutic benefit in severe respiratory failure in pulmonary alveolar proteinosis and influenza a H1N1 pneumonia. Clin Pract. 2011;1(3):107–9. Nicolini A, Barlascini C. Lobar flexible fiberoptic lung lavage: therapeutic benefit in severe respiratory failure in pulmonary alveolar proteinosis and influenza a H1N1 pneumonia. Clin Pract. 2011;1(3):107–9.
7.
go back to reference Brach BB, Harrell JH, Moser KM. Alveolar Proteinosis: lobar lavage by Fiberoptic Bronchoscopic technique. Chest. 1976;69(2):224–7.CrossRef Brach BB, Harrell JH, Moser KM. Alveolar Proteinosis: lobar lavage by Fiberoptic Bronchoscopic technique. Chest. 1976;69(2):224–7.CrossRef
8.
go back to reference Cheng S, Chang H, Lau H, Lee L, Yang P. Pulmonary alveolar Proteinosis: treatment by Bronchofiberscopic lobar lavage. Chest. 2002;122(4):1480–5.CrossRef Cheng S, Chang H, Lau H, Lee L, Yang P. Pulmonary alveolar Proteinosis: treatment by Bronchofiberscopic lobar lavage. Chest. 2002;122(4):1480–5.CrossRef
9.
go back to reference Baldi MM, Nair J, Athavale A, Gavali V, Sarkar M, Divate S, Shah U. Serial lobar lung lavage in pulmonary alveolar Proteinosis. J Bronchol Intervent Pulmonol. 2013;20(4):333–7.CrossRef Baldi MM, Nair J, Athavale A, Gavali V, Sarkar M, Divate S, Shah U. Serial lobar lung lavage in pulmonary alveolar Proteinosis. J Bronchol Intervent Pulmonol. 2013;20(4):333–7.CrossRef
10.
go back to reference Seymour J, Presneill J, Schoch O, Downie G, Moore P, Doyle I, et al. Therapeutic efficacy of granulocyte-macrophage Colony-stimulating factor in patients with idiopathic acquired alveolar Proteinosis. Am J Respir Crit Care Med. 2001;163(2):524–31.CrossRef Seymour J, Presneill J, Schoch O, Downie G, Moore P, Doyle I, et al. Therapeutic efficacy of granulocyte-macrophage Colony-stimulating factor in patients with idiopathic acquired alveolar Proteinosis. Am J Respir Crit Care Med. 2001;163(2):524–31.CrossRef
11.
go back to reference Khan A, Agarwal R, Aggarwal AN. Effectiveness of granulocyte-macrophage Colony-stimulating factor therapy in autoimmune pulmonary alveolar Proteinosis: a meta-analysis of observational studies. Chest. 2012;141(5):1273–83.CrossRef Khan A, Agarwal R, Aggarwal AN. Effectiveness of granulocyte-macrophage Colony-stimulating factor therapy in autoimmune pulmonary alveolar Proteinosis: a meta-analysis of observational studies. Chest. 2012;141(5):1273–83.CrossRef
12.
go back to reference Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open-label trial of granulocyte macrophage Colony stimulating factor therapy for moderate symptomatic pulmonary alveolar Proteinosis. Chest. 2006;130(1):227–37.CrossRef Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open-label trial of granulocyte macrophage Colony stimulating factor therapy for moderate symptomatic pulmonary alveolar Proteinosis. Chest. 2006;130(1):227–37.CrossRef
Metadata
Title
Combined-modality therapy for pulmonary alveolar proteinosis in a remote setting: a case report
Authors
Dacia S. K. Boyce
John W. Lee
Phalgoon Shah
Judy H. Freeman
Matthew C. Aboudara
David C. Hostler
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2019
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0822-x

Other articles of this Issue 1/2019

BMC Pulmonary Medicine 1/2019 Go to the issue