Skip to main content
Top
Published in: Pediatric Cardiology 6/2017

01-08-2017 | Original Article

Hypoplastic Left Heart Syndrome Sequencing Reveals a Novel NOTCH1 Mutation in a Family with Single Ventricle Defects

Authors: Matthew D. Durbin, Adrian G. Cadar, Charles H. Williams, Yan Guo, David P. Bichell, Yan Ru Su, Charles C. Hong

Published in: Pediatric Cardiology | Issue 6/2017

Login to get access

Abstract

Hypoplastic left heart syndrome (HLHS) has been associated with germline mutations in 12 candidate genes and a recurrent somatic mutation in HAND1 gene. Using targeted and whole exome sequencing (WES) of heart tissue samples from HLHS patients, we sought to estimate the prevalence of somatic and germline mutations associated with HLHS. We performed Sanger sequencing of the HAND1 gene on 14 ventricular (9 LV and 5 RV) samples obtained from HLHS patients, and WES of 4 LV, 2 aortic, and 4 matched PBMC samples, analyzing for sequence discrepancy. We also screened for mutations in the 12 candidate genes implicated in HLHS. We found no somatic mutations in our HLHS cohort. However, we detected a novel germline frameshift/stop-gain mutation in NOTCH1 in a HLHS patient with a family history of both HLHS and hypoplastic right heart syndrome (HRHS). Our study, involving one of the first familial cases of single ventricle defects linked to a specific mutation, strengthens the association of NOTCH1 mutations with HLHS and suggests that the two morphologically distinct single ventricle conditions, HLHS and HRHS, may share a common molecular and cellular etiology. Finally, somatic mutations in the LV are an unlikely contributor to HLHS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS (2010) Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A 88:1008–1016CrossRef Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS (2010) Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A 88:1008–1016CrossRef
2.
go back to reference Barron DJ, Kilby MD, Davies B, Wright JG, Jones TJ, Brawn WJ (2009) Hypoplastic left heart syndrome. Lancet 374(9689):551–564CrossRefPubMed Barron DJ, Kilby MD, Davies B, Wright JG, Jones TJ, Brawn WJ (2009) Hypoplastic left heart syndrome. Lancet 374(9689):551–564CrossRefPubMed
3.
go back to reference Connor JA, Thiagarajan R (2007) Hypoplastic left heart syndrome. Orphanet J Rare Dis 2(1):1CrossRef Connor JA, Thiagarajan R (2007) Hypoplastic left heart syndrome. Orphanet J Rare Dis 2(1):1CrossRef
4.
5.
go back to reference Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498(7453):220–223CrossRefPubMedPubMedCentral Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498(7453):220–223CrossRefPubMedPubMedCentral
6.
go back to reference Hinton RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW (2007) Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 50(16):1590–1595CrossRefPubMed Hinton RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW (2007) Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 50(16):1590–1595CrossRefPubMed
7.
go back to reference McBride KL, Zender GA, Fitzgerald-Butt SM, Koehler D, Menesses-Diaz A, Fernbach S, Lee K, Towbin JA, Leal S, Belmont JW (2009) Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet 17(6):811–819CrossRefPubMedPubMedCentral McBride KL, Zender GA, Fitzgerald-Butt SM, Koehler D, Menesses-Diaz A, Fernbach S, Lee K, Towbin JA, Leal S, Belmont JW (2009) Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet 17(6):811–819CrossRefPubMedPubMedCentral
8.
go back to reference Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, Ou Z, Wiszniewska J, Driscoll DJ, Bolivar J (2009) Genomic and genic deletions of the FOX gene cluster on 16q24. 1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84(6):780–791CrossRefPubMedPubMedCentral Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, Ou Z, Wiszniewska J, Driscoll DJ, Bolivar J (2009) Genomic and genic deletions of the FOX gene cluster on 16q24. 1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84(6):780–791CrossRefPubMedPubMedCentral
9.
go back to reference Dasgupta C, Martinez A-M, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (α1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res/Fundam Mol Mech Mutagen 479(1):173–186CrossRef Dasgupta C, Martinez A-M, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (α1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res/Fundam Mol Mech Mutagen 479(1):173–186CrossRef
10.
go back to reference Thomas T, Yamagishi H, Overbeek PA, Olson EN, Srivastava D (1998) The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left–right sidedness. Dev Biol 196(2):228–236CrossRefPubMed Thomas T, Yamagishi H, Overbeek PA, Olson EN, Srivastava D (1998) The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left–right sidedness. Dev Biol 196(2):228–236CrossRefPubMed
11.
go back to reference Small EM, Krieg PA (2004) Molecular regulation of cardiac chamber-specific gene expression. Trends Cardiovasc Med 14(1):13–18CrossRefPubMed Small EM, Krieg PA (2004) Molecular regulation of cardiac chamber-specific gene expression. Trends Cardiovasc Med 14(1):13–18CrossRefPubMed
12.
go back to reference Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, O’Leary PW, Olson TM (2015) Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circulation 115:001070 Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, O’Leary PW, Olson TM (2015) Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circulation 115:001070
13.
go back to reference Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P, Grossfeld P, Fatkin D, Jones O, Hayes P (2003) Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 41(11):2072–2076CrossRefPubMed Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P, Grossfeld P, Fatkin D, Jones O, Hayes P (2003) Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 41(11):2072–2076CrossRefPubMed
14.
go back to reference Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274CrossRefPubMed Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274CrossRefPubMed
15.
go back to reference Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso A, Pezzoli L, Vetro A, Barachetti D, Boni L (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81(6):542–554CrossRefPubMed Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso A, Pezzoli L, Vetro A, Barachetti D, Boni L (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81(6):542–554CrossRefPubMed
16.
go back to reference Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T (2003) Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130(24):5953–5964CrossRefPubMed Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T (2003) Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130(24):5953–5964CrossRefPubMed
17.
go back to reference Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J (2008) A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet 17(10):1397–1405CrossRefPubMed Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J (2008) A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet 17(10):1397–1405CrossRefPubMed
18.
go back to reference Esposito G, Butler TL, Blue GM, Cole AD, Sholler GF, Kirk EP, Grossfeld P, Perryman BM, Harvey RP, Winlaw DS (2011) Somatic mutations in NKX2–5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A 155(10):2416–2421CrossRef Esposito G, Butler TL, Blue GM, Cole AD, Sholler GF, Kirk EP, Grossfeld P, Perryman BM, Harvey RP, Winlaw DS (2011) Somatic mutations in NKX2–5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A 155(10):2416–2421CrossRef
19.
go back to reference Draus J, Hauck M, Goetsch M, Austin E, Tomita-Mitchell A, Mitchell ME (2009) Investigation of somatic NKX2-5 mutations in congenital heart disease. J Med Genet 46(2):115–122CrossRefPubMedPubMedCentral Draus J, Hauck M, Goetsch M, Austin E, Tomita-Mitchell A, Mitchell ME (2009) Investigation of somatic NKX2-5 mutations in congenital heart disease. J Med Genet 46(2):115–122CrossRefPubMedPubMedCentral
20.
go back to reference Salazar M, Consoli F, Villegas V, Caicedo V, Maddaloni V, Daniele P, Pacileo G (2011) Search of somatic GATA4 and NKX2. 5 gene mutations in sporadic septal heart defects. Eur J Med Genet 54(3):306–309CrossRefPubMed Salazar M, Consoli F, Villegas V, Caicedo V, Maddaloni V, Daniele P, Pacileo G (2011) Search of somatic GATA4 and NKX2. 5 gene mutations in sporadic septal heart defects. Eur J Med Genet 54(3):306–309CrossRefPubMed
21.
go back to reference Theis JL, Hrstka SC, Evans JM, O’Byrne MM, De Andrade M, O’Leary PW, Nelson TJ, Olson TM (2015) Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet 134(9):1003–1011CrossRefPubMed Theis JL, Hrstka SC, Evans JM, O’Byrne MM, De Andrade M, O’Leary PW, Nelson TJ, Olson TM (2015) Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet 134(9):1003–1011CrossRefPubMed
22.
go back to reference Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, Wassink-Ruiter JSK, van der Zwaag PA, du Marchie Sarvaas GJ, Bergman KA (2016) Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med 18:914–923CrossRefPubMed Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, Wassink-Ruiter JSK, van der Zwaag PA, du Marchie Sarvaas GJ, Bergman KA (2016) Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med 18:914–923CrossRefPubMed
23.
go back to reference Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols. Humana Press, Totowa, pp 365–386CrossRef Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols. Humana Press, Totowa, pp 365–386CrossRef
24.
go back to reference Guo Y, Zhao S, Sheng Q, Ye F, Li J, Lehmann B, Pietenpol J, Samuels DC, Shyr Y (2014) Multi-perspective quality control of Illumina exome sequencing data using QC3. Genomics 103(5):323–328CrossRefPubMed Guo Y, Zhao S, Sheng Q, Ye F, Li J, Lehmann B, Pietenpol J, Samuels DC, Shyr Y (2014) Multi-perspective quality control of Illumina exome sequencing data using QC3. Genomics 103(5):323–328CrossRefPubMed
25.
27.
go back to reference Daniels J, Holmans P, Williams N, Turic D, McGuffin P, Plomin R, Owen MJ (1998) A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Hum Genet 62(5):1189–119726CrossRefPubMedPubMedCentral Daniels J, Holmans P, Williams N, Turic D, McGuffin P, Plomin R, Owen MJ (1998) A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Hum Genet 62(5):1189–119726CrossRefPubMedPubMedCentral
28.
go back to reference DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefPubMedPubMedCentral DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefPubMedPubMedCentral
29.
go back to reference Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefPubMedPubMedCentral Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefPubMedPubMedCentral
30.
go back to reference Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y (2014) Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genom 15(1):1CrossRef Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y (2014) Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genom 15(1):1CrossRef
31.
go back to reference Kobayashi J, Yoshida M, Tarui S, Hirata M, Nagai Y, Kasahara S, Naruse K, Ito H, Sano S, Oh H (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS ONE 9(7):e102796CrossRefPubMedPubMedCentral Kobayashi J, Yoshida M, Tarui S, Hirata M, Nagai Y, Kasahara S, Naruse K, Ito H, Sano S, Oh H (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS ONE 9(7):e102796CrossRefPubMedPubMedCentral
32.
33.
34.
go back to reference Jung SH, Kim MS, Lee SH, Park HC, Choi HJ, Maeng L, Min KO, Kim J, Park TI, Shin OR, Kim TJ (2016) Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung. Proce Natl Acad Sci 9:201606946 Jung SH, Kim MS, Lee SH, Park HC, Choi HJ, Maeng L, Min KO, Kim J, Park TI, Shin OR, Kim TJ (2016) Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung. Proce Natl Acad Sci 9:201606946
35.
go back to reference Reamon-Buettner S, Borlak J (2004) Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J Med Genet 41(9):684–690CrossRefPubMedPubMedCentral Reamon-Buettner S, Borlak J (2004) Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J Med Genet 41(9):684–690CrossRefPubMedPubMedCentral
36.
go back to reference Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354(25):2677–2688CrossRefPubMed Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354(25):2677–2688CrossRefPubMed
37.
go back to reference Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155(5):1467–1471CrossRefPubMedPubMedCentral Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155(5):1467–1471CrossRefPubMedPubMedCentral
38.
go back to reference Majumdar R, Yagubyan M, Sarkar G, Bolander ME, Sundt TM (2006) Bicuspid aortic valve and ascending aortic aneurysm are not associated with germline or somatic homeobox NKX2-5 gene polymorphism in 19 patients. J Thorac Cardiovasc Surg 131(6):1301–1305CrossRefPubMed Majumdar R, Yagubyan M, Sarkar G, Bolander ME, Sundt TM (2006) Bicuspid aortic valve and ascending aortic aneurysm are not associated with germline or somatic homeobox NKX2-5 gene polymorphism in 19 patients. J Thorac Cardiovasc Surg 131(6):1301–1305CrossRefPubMed
40.
go back to reference Mäkikallio K, McElhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC, Lock JE, Marcus E, Tworetzky W (2006) Fetal Aortic valve stenosis and the evolution of hypoplastic left heart syndrome patient selection for fetal intervention. Circulation 113(11):1401–1405CrossRefPubMed Mäkikallio K, McElhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC, Lock JE, Marcus E, Tworetzky W (2006) Fetal Aortic valve stenosis and the evolution of hypoplastic left heart syndrome patient selection for fetal intervention. Circulation 113(11):1401–1405CrossRefPubMed
41.
go back to reference Ishigami S, Ohtsuki S, Tarui S, Ousaka D, Eitoku T, Kondo M, Okuyama M, Kobayashi J, Baba K, Arai S (2015) Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome The TICAP prospective phase 1 controlled trial. Circ Res 116(4):653–664CrossRefPubMed Ishigami S, Ohtsuki S, Tarui S, Ousaka D, Eitoku T, Kondo M, Okuyama M, Kobayashi J, Baba K, Arai S (2015) Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome The TICAP prospective phase 1 controlled trial. Circ Res 116(4):653–664CrossRefPubMed
42.
go back to reference Tarui S, Ishigami S, Ousaka D, Kasahara S, Ohtsuki S, Sano S, Oh H (2015) Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg 150(5):1198–1208 (e1192) Tarui S, Ishigami S, Ousaka D, Kasahara S, Ohtsuki S, Sano S, Oh H (2015) Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg 150(5):1198–1208 (e1192)
Metadata
Title
Hypoplastic Left Heart Syndrome Sequencing Reveals a Novel NOTCH1 Mutation in a Family with Single Ventricle Defects
Authors
Matthew D. Durbin
Adrian G. Cadar
Charles H. Williams
Yan Guo
David P. Bichell
Yan Ru Su
Charles C. Hong
Publication date
01-08-2017
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 6/2017
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-017-1650-5

Other articles of this Issue 6/2017

Pediatric Cardiology 6/2017 Go to the issue