Skip to main content
Top

Open Access 13-04-2024 | Hypopituitarism

Pitfalls in the lab assessment of hypopituitarism

Authors: Katharina Schilbach, Martin Bidlingmaier

Published in: Reviews in Endocrine and Metabolic Disorders

Login to get access

Abstract

The diagnostic approach to hypopituitarism involves many disciplines. Clinical symptoms rarely are specific. Imaging techniques are helpful but cannot prove the specific functional defects. Therefore, the definitive diagnosis of pituitary insufficiency is largely based on laboratory tests. However, also laboratory methods come with inherent limitations, and it is essential for the clinician to know and recognize typical pitfalls. Most factors potentially impairing the quality of hormone measurements are introduced in the preanalytical phase, i.e. before the hormones are measured by the laboratory. For example, the timing of blood drawing with respect to circadian rhythm, stress, and medication can have an influence on hormone concentrations. During the actual analysis of the hormones, cross-reactions with molecules present in the sample presenting the same or similar epitopes than the intended analyte may affect immunoassays. Interference can also come from heterophilic or human anti-animal antibodies. Unexpected problems can also be due to popular nutritional supplements which interfere with the measurement procedures. An important example in this respect is the interference from biotin. It became only clinically visible when the use of this vitamin became popular among patients. The extreme serum concentrations reached when patients take it as a supplement can lead to incorrect measurements in immunoassays employing the biotin-streptavidin system. To some extent, hormone analyses using liquid chromatography mass spectrometry (LCMS) can overcome problems, although availability and cost-effectiveness of this method still imposes restrictions. In the post-analytical phase, appropriateness of reference intervals and cut-offs with respect to the specific analytical method used is of outmost importance. Furthermore, for interpretation, additional biological and pharmacological factors like BMI, age and concomitant diseases must be considered to avoid misinterpretation of the measured concentrations. It is important for the clinician and the laboratory to recognize when one or more laboratory values do not match the clinical picture. In an interdisciplinary approach, the search for the underlying cause should be initiated.
Literature
1.
go back to reference Plebani M. The detection and prevention of errors in laboratory medicine. Ann Clin Biochem. 2010;47:101–10.PubMedCrossRef Plebani M. The detection and prevention of errors in laboratory medicine. Ann Clin Biochem. 2010;47:101–10.PubMedCrossRef
2.
go back to reference Horrocks PM, Jones AF, Ratcliffe WA, Holder G, White A, Holder R, et al. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin Endocrinol (Oxf). 1990;32:127–34.PubMedCrossRef Horrocks PM, Jones AF, Ratcliffe WA, Holder G, White A, Holder R, et al. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin Endocrinol (Oxf). 1990;32:127–34.PubMedCrossRef
3.
go back to reference Tannenbaum GS. Somatostatin as a physiological regulator of pulsatile growth hormone secretion. Horm Res. 1988;29:70–4.PubMedCrossRef Tannenbaum GS. Somatostatin as a physiological regulator of pulsatile growth hormone secretion. Horm Res. 1988;29:70–4.PubMedCrossRef
5.
go back to reference Weibel L, Follenius M, Spiegel K, Gronfier C, Brandenberger G. Growth hormone secretion in night workers. Chronobiol Int. 1997;14:49–60.PubMedCrossRef Weibel L, Follenius M, Spiegel K, Gronfier C, Brandenberger G. Growth hormone secretion in night workers. Chronobiol Int. 1997;14:49–60.PubMedCrossRef
6.
go back to reference Salvador J, Dieguez C, Scanlon MF. The circadian rhythms of thyrotrophin and prolactin secretion. Chronobiol Int. 1988;5:85–93.PubMedCrossRef Salvador J, Dieguez C, Scanlon MF. The circadian rhythms of thyrotrophin and prolactin secretion. Chronobiol Int. 1988;5:85–93.PubMedCrossRef
7.
go back to reference Sack DA, James SP, Rosenthal NE, Wehr TA. Deficient nocturnal surge of TSH secretion during sleep and sleep deprivation in rapid-cycling bipolar illness. Psychiatry Res. 1988;23:179–91.PubMedCrossRef Sack DA, James SP, Rosenthal NE, Wehr TA. Deficient nocturnal surge of TSH secretion during sleep and sleep deprivation in rapid-cycling bipolar illness. Psychiatry Res. 1988;23:179–91.PubMedCrossRef
8.
go back to reference Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metabolism. 2008;93:2300–6.CrossRef Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metabolism. 2008;93:2300–6.CrossRef
9.
go back to reference Plymate SR, Tenover JS, Bremner WJ. Circadian variation in testosterone, sex hormone-binding globulin, and calculated non-sex hormone-binding globulin bound testosterone in healthy young and elderly men. J Androl. 1989;10:366–71.PubMedCrossRef Plymate SR, Tenover JS, Bremner WJ. Circadian variation in testosterone, sex hormone-binding globulin, and calculated non-sex hormone-binding globulin bound testosterone in healthy young and elderly men. J Androl. 1989;10:366–71.PubMedCrossRef
10.
go back to reference Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34:163–71.PubMedCrossRef Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34:163–71.PubMedCrossRef
11.
go back to reference Delitala G, Tomasi P, Virdis R. Prolactin, growth hormone and thyrotropin-thyroid hormone secretion during stress states in man. Baillieres Clin Endocrinol Metab. 1987;1:391–414.PubMedCrossRef Delitala G, Tomasi P, Virdis R. Prolactin, growth hormone and thyrotropin-thyroid hormone secretion during stress states in man. Baillieres Clin Endocrinol Metab. 1987;1:391–414.PubMedCrossRef
12.
go back to reference Widmer IE, Puder JJ, König C, Pargger H, Zerkowski HR, Girard J, et al. Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab. 2005;90:4579–86.PubMedCrossRef Widmer IE, Puder JJ, König C, Pargger H, Zerkowski HR, Girard J, et al. Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab. 2005;90:4579–86.PubMedCrossRef
13.
go back to reference Lennartsson A-K, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011;36:1530–9.PubMedCrossRef Lennartsson A-K, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011;36:1530–9.PubMedCrossRef
14.
go back to reference Malarkey WB, Pearl DK, Demers LM, Kiecolt-Glaser JK, Glaser R. Influence of academic stress and season on 24-hour mean concentrations of ACTH, cortisol, and beta-endorphin. Psychoneuroendocrinology. 1995;20:499–508.PubMedCrossRef Malarkey WB, Pearl DK, Demers LM, Kiecolt-Glaser JK, Glaser R. Influence of academic stress and season on 24-hour mean concentrations of ACTH, cortisol, and beta-endorphin. Psychoneuroendocrinology. 1995;20:499–508.PubMedCrossRef
15.
go back to reference Kehlet H, Blichert-Toft M, Lindholm J, Rasmussen P. Short ACTH test in assessing hypothalamic-pituitary-adrenocortical function. Br Med J. 1976;1:249–51.PubMedPubMedCentralCrossRef Kehlet H, Blichert-Toft M, Lindholm J, Rasmussen P. Short ACTH test in assessing hypothalamic-pituitary-adrenocortical function. Br Med J. 1976;1:249–51.PubMedPubMedCentralCrossRef
16.
go back to reference Tritos NA, Biller BMK. Current concepts of the diagnosis of adult growth hormone deficiency. Rev Endocr Metab Disord. 2021;22:109–16.PubMedCrossRef Tritos NA, Biller BMK. Current concepts of the diagnosis of adult growth hormone deficiency. Rev Endocr Metab Disord. 2021;22:109–16.PubMedCrossRef
17.
go back to reference Gadelha MR, Karavitaki N, Fudin J, Bettinger JJ, Raff H, Ben-Shlomo A. Opioids and pituitary function: expert opinion. Pituitary. 2022;25:52–63.PubMedCrossRef Gadelha MR, Karavitaki N, Fudin J, Bettinger JJ, Raff H, Ben-Shlomo A. Opioids and pituitary function: expert opinion. Pituitary. 2022;25:52–63.PubMedCrossRef
18.
go back to reference Molitch ME. Medication-induced hyperprolactinemia. Mayo Clin Proc. 2005;80:1050–7. Molitch ME. Medication-induced hyperprolactinemia. Mayo Clin Proc. 2005;80:1050–7.
19.
go back to reference Birzniece V, Ho KKY. Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Pract Res Clin Endocrinol Metab. 2017;31:59–69.PubMedCrossRef Birzniece V, Ho KKY. Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Pract Res Clin Endocrinol Metab. 2017;31:59–69.PubMedCrossRef
20.
go back to reference Chinoy A, Murray PG. Diagnosis of growth hormone deficiency in the paediatric and transitional age. Best Pract Res Clin Endocrinol Metab. 2016;30:737–47.PubMedCrossRef Chinoy A, Murray PG. Diagnosis of growth hormone deficiency in the paediatric and transitional age. Best Pract Res Clin Endocrinol Metab. 2016;30:737–47.PubMedCrossRef
21.
go back to reference Czarnywojtek A, Zgorzalewicz-Stachowiak M, Czarnocka B, Sawicka-Gutaj N, Gut P, Krela-Kazmierczak I et al. Effect of lithium carbonate on the function of the thyroid gland: mechanism of action and clinical implications. J Physiol Pharmacol. 2020;71. Czarnywojtek A, Zgorzalewicz-Stachowiak M, Czarnocka B, Sawicka-Gutaj N, Gut P, Krela-Kazmierczak I et al. Effect of lithium carbonate on the function of the thyroid gland: mechanism of action and clinical implications. J Physiol Pharmacol. 2020;71.
23.
go back to reference Manolopoulou J, Alami Y, Petersenn S, Schopohl J, Wu Z, Strasburger CJ, et al. Automated 22-kD growth hormone-specific assay without interference from Pegvisomant. Clin Chem. 2012;58:1446–56.PubMedCrossRef Manolopoulou J, Alami Y, Petersenn S, Schopohl J, Wu Z, Strasburger CJ, et al. Automated 22-kD growth hormone-specific assay without interference from Pegvisomant. Clin Chem. 2012;58:1446–56.PubMedCrossRef
24.
go back to reference Mandic S, Kratzsch J, Mandic D, Debeljak Z, Lukic I, Horvat V, et al. Falsely elevated serum oestradiol due to exemestane therapy. Ann Clin Biochem. 2017;54:402–5.PubMedCrossRef Mandic S, Kratzsch J, Mandic D, Debeljak Z, Lukic I, Horvat V, et al. Falsely elevated serum oestradiol due to exemestane therapy. Ann Clin Biochem. 2017;54:402–5.PubMedCrossRef
25.
go back to reference Gessl A, Blueml S, Bieglmayer C, Marculescu R. Anti-ruthenium antibodies mimic macro-TSH in electrochemiluminescent immunoassay. Clin Chem Lab Med. 2014;52:1589–94.PubMedCrossRef Gessl A, Blueml S, Bieglmayer C, Marculescu R. Anti-ruthenium antibodies mimic macro-TSH in electrochemiluminescent immunoassay. Clin Chem Lab Med. 2014;52:1589–94.PubMedCrossRef
26.
go back to reference Verougstraete N, Berth M, Vaneechoutte M, Delanghe J, Callewaert N. Interference of anti-streptavidin antibodies in immunoassays: a very rare phenomenon or a more common finding? Clin Chem Lab Med. 2020;58:1673–80.PubMedCrossRef Verougstraete N, Berth M, Vaneechoutte M, Delanghe J, Callewaert N. Interference of anti-streptavidin antibodies in immunoassays: a very rare phenomenon or a more common finding? Clin Chem Lab Med. 2020;58:1673–80.PubMedCrossRef
27.
go back to reference Després N, Grant AM. Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem. 1998;44:440–54.PubMedCrossRef Després N, Grant AM. Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem. 1998;44:440–54.PubMedCrossRef
28.
go back to reference Greene LW, Geer EB, Page-Wilson G, Findling JW, Raff H. Assay-specific spurious ACTH results lead to misdiagnosis, unnecessary testing, and Surgical Misadventure-A Case Series. J Endocr Soc. 2019;3:763–72.PubMedPubMedCentralCrossRef Greene LW, Geer EB, Page-Wilson G, Findling JW, Raff H. Assay-specific spurious ACTH results lead to misdiagnosis, unnecessary testing, and Surgical Misadventure-A Case Series. J Endocr Soc. 2019;3:763–72.PubMedPubMedCentralCrossRef
29.
go back to reference Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013;27:647–61.PubMedCrossRef Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013;27:647–61.PubMedCrossRef
30.
go back to reference Öncül Ü, Eminoğlu FT, Köse E, Doğan Ö, Özsu E, Aycan Z. Serum biotin interference: a troublemaker in hormone immunoassays. Clin Biochem. 2022;99:97–102.PubMedCrossRef Öncül Ü, Eminoğlu FT, Köse E, Doğan Ö, Özsu E, Aycan Z. Serum biotin interference: a troublemaker in hormone immunoassays. Clin Biochem. 2022;99:97–102.PubMedCrossRef
31.
go back to reference Brady S, Bates K, Oddy S, Jeon YL, Pichayayothin T, Tetteh R, et al. Prevalence of elevated serum concentrations of biotin in patients from South East England, Korea, Singapore and Thailand and risk of immunoassay interference. J Clin Pathol. 2023;76:637–41.PubMedCrossRef Brady S, Bates K, Oddy S, Jeon YL, Pichayayothin T, Tetteh R, et al. Prevalence of elevated serum concentrations of biotin in patients from South East England, Korea, Singapore and Thailand and risk of immunoassay interference. J Clin Pathol. 2023;76:637–41.PubMedCrossRef
32.
go back to reference Stieglitz HM, Korpi-Steiner N, Katzman B, Mersereau JE, Styner M. Suspected testosterone-producing Tumor in a patient taking biotin supplements. J Endocr Soc. 2018;2:563–9.PubMedPubMedCentralCrossRef Stieglitz HM, Korpi-Steiner N, Katzman B, Mersereau JE, Styner M. Suspected testosterone-producing Tumor in a patient taking biotin supplements. J Endocr Soc. 2018;2:563–9.PubMedPubMedCentralCrossRef
33.
go back to reference Vesper HW, Botelho JC. Standardization of testosterone measurements in humans. J Steroid Biochem Mol Biol. 2010;121:513–9.PubMedCrossRef Vesper HW, Botelho JC. Standardization of testosterone measurements in humans. J Steroid Biochem Mol Biol. 2010;121:513–9.PubMedCrossRef
34.
go back to reference Raff H. Update on late-night salivary cortisol for the diagnosis of Cushing’s syndrome: methodological considerations. Endocrine. 2013;44:346–9.PubMedCrossRef Raff H. Update on late-night salivary cortisol for the diagnosis of Cushing’s syndrome: methodological considerations. Endocrine. 2013;44:346–9.PubMedCrossRef
35.
go back to reference Bidlingmaier M. Problems with GH assays and strategies toward standardization. Eur J Endocrinol. 2008;159(Suppl 1):S41–44.PubMedCrossRef Bidlingmaier M. Problems with GH assays and strategies toward standardization. Eur J Endocrinol. 2008;159(Suppl 1):S41–44.PubMedCrossRef
36.
go back to reference Carrozza C, Lapolla R, Canu G, Annunziata F, Torti E, Baroni S, et al. Human growth hormone (GH) immunoassay: standardization and clinical implications. Clin Chem Lab Med. 2011;49:851–3.PubMedCrossRef Carrozza C, Lapolla R, Canu G, Annunziata F, Torti E, Baroni S, et al. Human growth hormone (GH) immunoassay: standardization and clinical implications. Clin Chem Lab Med. 2011;49:851–3.PubMedCrossRef
37.
go back to reference Clemmons DR, Bidlingmaier M. Interpreting growth hormone and IGF-I results using modern assays and reference ranges for the monitoring of treatment effectiveness in acromegaly. Front Endocrinol (Lausanne). 2023;14:1266339.PubMedCrossRef Clemmons DR, Bidlingmaier M. Interpreting growth hormone and IGF-I results using modern assays and reference ranges for the monitoring of treatment effectiveness in acromegaly. Front Endocrinol (Lausanne). 2023;14:1266339.PubMedCrossRef
38.
go back to reference Mavromati M, Kuhn E, Agostini H, Brailly-Tabard S, Massart C, Piketty M-L, et al. Classification of patients with GH disorders May Vary according to the IGF-I assay. J Clin Endocrinol Metab. 2017;102:2844–52.PubMedCrossRef Mavromati M, Kuhn E, Agostini H, Brailly-Tabard S, Massart C, Piketty M-L, et al. Classification of patients with GH disorders May Vary according to the IGF-I assay. J Clin Endocrinol Metab. 2017;102:2844–52.PubMedCrossRef
39.
go back to reference Adam EK, Hittner EF, Thomas SE, Villaume SC, Nwafor EE. Racial discrimination and ethnic racial identity in adolescence as modulators of HPA axis activity. Dev Psychopathol. 2020;32:1669–84.PubMedCrossRef Adam EK, Hittner EF, Thomas SE, Villaume SC, Nwafor EE. Racial discrimination and ethnic racial identity in adolescence as modulators of HPA axis activity. Dev Psychopathol. 2020;32:1669–84.PubMedCrossRef
40.
go back to reference Utge S, Räikkönen K, Kajantie E, Lipsanen J, Andersson S, Strandberg T, et al. Polygenic risk score of SERPINA6/SERPINA1 associates with diurnal and stress-induced HPA axis activity in children. Psychoneuroendocrinology. 2018;93:1–7.PubMedCrossRef Utge S, Räikkönen K, Kajantie E, Lipsanen J, Andersson S, Strandberg T, et al. Polygenic risk score of SERPINA6/SERPINA1 associates with diurnal and stress-induced HPA axis activity in children. Psychoneuroendocrinology. 2018;93:1–7.PubMedCrossRef
41.
go back to reference Bidlingmaier M, Valcour A, Schilbach K, Kuehnle T, Diederich S, Rogge T, et al. Differences in the distribution of IGF-I concentrations between European and US populations. J Endocr Soc. 2022;6:bvac081.PubMedPubMedCentralCrossRef Bidlingmaier M, Valcour A, Schilbach K, Kuehnle T, Diederich S, Rogge T, et al. Differences in the distribution of IGF-I concentrations between European and US populations. J Endocr Soc. 2022;6:bvac081.PubMedPubMedCentralCrossRef
42.
go back to reference Grattan DR, Steyn FJ, Kokay IC, Anderson GM, Bunn SJ. Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J Neuroendocrinol. 2008;20:497–507.PubMedCrossRef Grattan DR, Steyn FJ, Kokay IC, Anderson GM, Bunn SJ. Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J Neuroendocrinol. 2008;20:497–507.PubMedCrossRef
43.
go back to reference Mazor M, Hershkowitz R, Ghezzi F, Cohen J, Chaim W, Wiznitzer A, et al. Prolactin concentrations in preterm and term pregnancy and labour. Arch Gynecol Obstet. 1996;258:69–74.PubMedCrossRef Mazor M, Hershkowitz R, Ghezzi F, Cohen J, Chaim W, Wiznitzer A, et al. Prolactin concentrations in preterm and term pregnancy and labour. Arch Gynecol Obstet. 1996;258:69–74.PubMedCrossRef
44.
go back to reference Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J, et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J Clin Endocrinol Metab. 2014;99:1712–21.PubMedCrossRef Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J, et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J Clin Endocrinol Metab. 2014;99:1712–21.PubMedCrossRef
45.
go back to reference Hoffman DM, O’Sullivan AJ, Ho KKY, Baxter RC. Diagnosis of growth-hormone deficiency in adults. Lancet. 1994;343:1064–8.PubMedCrossRef Hoffman DM, O’Sullivan AJ, Ho KKY, Baxter RC. Diagnosis of growth-hormone deficiency in adults. Lancet. 1994;343:1064–8.PubMedCrossRef
46.
go back to reference Hilding A, Hall K, Wivall-Helleryd IL, Sääf M, Melin AL, Thorén M. Serum levels of insulin-like growth factor I in 152 patients with growth hormone deficiency, aged 19–82 years, in relation to those in healthy subjects. J Clin Endocrinol Metab. 1999;84:2013–9.PubMed Hilding A, Hall K, Wivall-Helleryd IL, Sääf M, Melin AL, Thorén M. Serum levels of insulin-like growth factor I in 152 patients with growth hormone deficiency, aged 19–82 years, in relation to those in healthy subjects. J Clin Endocrinol Metab. 1999;84:2013–9.PubMed
47.
go back to reference Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML, Endocrine Society. Evaluation and treatment of adult growth hormone deficiency: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1587–609.PubMedCrossRef Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML, Endocrine Society. Evaluation and treatment of adult growth hormone deficiency: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1587–609.PubMedCrossRef
48.
go back to reference Rolfsjord LB, Bakkeheim E, Berents TL, Alm J, Skjerven HO, Carlsen K-H, et al. Morning salivary cortisol in Young Children: reference values and the effects of Age, Sex, and Acute Bronchiolitis. J Pediatr. 2017;184:193–e1983.PubMedCrossRef Rolfsjord LB, Bakkeheim E, Berents TL, Alm J, Skjerven HO, Carlsen K-H, et al. Morning salivary cortisol in Young Children: reference values and the effects of Age, Sex, and Acute Bronchiolitis. J Pediatr. 2017;184:193–e1983.PubMedCrossRef
49.
go back to reference Kratzsch J, Schubert G, Pulzer F, Pfaeffle R, Koerner A, Dietz A, et al. Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clin Biochem. 2008;41:1091–8.PubMedCrossRef Kratzsch J, Schubert G, Pulzer F, Pfaeffle R, Koerner A, Dietz A, et al. Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clin Biochem. 2008;41:1091–8.PubMedCrossRef
50.
go back to reference Schilbach K, Strasburger CJ, Bidlingmaier M. Biochemical investigations in diagnosis and follow up of acromegaly. Pituitary. 2017;20:33–45.PubMedCrossRef Schilbach K, Strasburger CJ, Bidlingmaier M. Biochemical investigations in diagnosis and follow up of acromegaly. Pituitary. 2017;20:33–45.PubMedCrossRef
51.
go back to reference Schilbach K, Gar C, Lechner A, Nicolay SS, Schwerdt L, Haenelt M, et al. Determinants of the growth hormone nadir during oral glucose tolerance test in adults. Eur J Endocrinol. 2019;181:55–67.PubMedCrossRef Schilbach K, Gar C, Lechner A, Nicolay SS, Schwerdt L, Haenelt M, et al. Determinants of the growth hormone nadir during oral glucose tolerance test in adults. Eur J Endocrinol. 2019;181:55–67.PubMedCrossRef
52.
go back to reference Deutschbein T, Bidlingmaier M, Schopohl J, Strasburger CJ, Petersenn S. Anthropometric factors have significant influence on the outcome of the GHRH-arginine test: establishment of normative data for an automated immunoassay specifically measuring 22 kDa human growth hormone. Eur J Endocrinol. 2017;176:273–81.PubMedCrossRef Deutschbein T, Bidlingmaier M, Schopohl J, Strasburger CJ, Petersenn S. Anthropometric factors have significant influence on the outcome of the GHRH-arginine test: establishment of normative data for an automated immunoassay specifically measuring 22 kDa human growth hormone. Eur J Endocrinol. 2017;176:273–81.PubMedCrossRef
53.
go back to reference Dichtel LE, Yuen KCJ, Bredella MA, Gerweck AV, Russell BM, Riccio AD, et al. Overweight/Obese adults with pituitary disorders require lower peak growth hormone cutoff values on glucagon stimulation testing to avoid overdiagnosis of growth hormone deficiency. J Clin Endocrinol Metab. 2014;99:4712–9.PubMedPubMedCentralCrossRef Dichtel LE, Yuen KCJ, Bredella MA, Gerweck AV, Russell BM, Riccio AD, et al. Overweight/Obese adults with pituitary disorders require lower peak growth hormone cutoff values on glucagon stimulation testing to avoid overdiagnosis of growth hormone deficiency. J Clin Endocrinol Metab. 2014;99:4712–9.PubMedPubMedCentralCrossRef
54.
go back to reference Garcia JM, Biller BMK, Korbonits M, Popovic V, Luger A, Strasburger CJ, et al. Sensitivity and specificity of the macimorelin test for diagnosis of AGHD. Endocr Connect. 2021;10:76–83.PubMedCrossRef Garcia JM, Biller BMK, Korbonits M, Popovic V, Luger A, Strasburger CJ, et al. Sensitivity and specificity of the macimorelin test for diagnosis of AGHD. Endocr Connect. 2021;10:76–83.PubMedCrossRef
55.
go back to reference Miell JP, Taylor AM, Zini M, Maheshwari HG, Ross RJ, Valcavi R. Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors (IGFs) and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab. 1993;76:950–5.PubMed Miell JP, Taylor AM, Zini M, Maheshwari HG, Ross RJ, Valcavi R. Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors (IGFs) and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab. 1993;76:950–5.PubMed
56.
go back to reference Agha A, Walker D, Perry L, Drake WM, Chew SL, Jenkins PJ, et al. Unmasking of central hypothyroidism following growth hormone replacement in adult hypopituitary patients. Clin Endocrinol. 2007;66:72–7.CrossRef Agha A, Walker D, Perry L, Drake WM, Chew SL, Jenkins PJ, et al. Unmasking of central hypothyroidism following growth hormone replacement in adult hypopituitary patients. Clin Endocrinol. 2007;66:72–7.CrossRef
57.
go back to reference Filipsson H, Johannsson G. GH replacement in adults: interactions with other pituitary hormone deficiencies and replacement therapies. Eur J Endocrinol. 2009;161(Suppl 1):S85–95.PubMedCrossRef Filipsson H, Johannsson G. GH replacement in adults: interactions with other pituitary hormone deficiencies and replacement therapies. Eur J Endocrinol. 2009;161(Suppl 1):S85–95.PubMedCrossRef
58.
go back to reference Garcia A, Herbon L, Barkan A, Papavasiliou S, Marshall JC. Hyperprolactinemia inhibits gonadotropin-releasing hormone (GnRH) stimulation of the number of pituitary GnRH receptors. Endocrinology. 1985;117:954–9.PubMedCrossRef Garcia A, Herbon L, Barkan A, Papavasiliou S, Marshall JC. Hyperprolactinemia inhibits gonadotropin-releasing hormone (GnRH) stimulation of the number of pituitary GnRH receptors. Endocrinology. 1985;117:954–9.PubMedCrossRef
60.
go back to reference Genchi VA, Rossi E, Lauriola C, D’Oria R, Palma G, Borrelli A, et al. Adipose tissue dysfunction and obesity-related male hypogonadism. Int J Mol Sci. 2022;23:8194.PubMedPubMedCentralCrossRef Genchi VA, Rossi E, Lauriola C, D’Oria R, Palma G, Borrelli A, et al. Adipose tissue dysfunction and obesity-related male hypogonadism. Int J Mol Sci. 2022;23:8194.PubMedPubMedCentralCrossRef
Metadata
Title
Pitfalls in the lab assessment of hypopituitarism
Authors
Katharina Schilbach
Martin Bidlingmaier
Publication date
13-04-2024
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-024-09881-1