Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Hypokalemia | Research

Low potassium disrupt intestinal barrier and result in bacterial translocation

Authors: Haishan Wu, Rong Huang, Jinjin Fan, Ning Luo, Xiao Yang

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Bacterial translocation was observed in critical illness and patients with chronic diseases such as liver cirrhosis and chronic kidney disease (CKD). Hypokalemia is a common complication in these diseases. Whether low potassium diet may increase intestinal permeability and result in bacterial translocation lack of evidence. The present study was aimed to investigate the potential effects of LK on intestinal permeability.

Methods

Grade 8-week-old male Bal B/C mice were randomly placed either on a normal potassium (NK) mouse chow or a low potassium (LK) diet for 28 days. Intestinal permeability and expression of tight junction proteins were compared between the two groups.

Results

Compared with the NK group, the mice in LK group had significantly lower serum potassium level, increased levels of plasmas endotoxin and plasma d-lactate. The bacterial translocation was higher and in occurred mainly in mesenteric lymph nodes (MLN), liver and spleen. The pathologic change of small intestine was obvious with thinner villus lamina propria, shorter crypt depth and thinner intestinal wall. Slight increases in the expression of proteins and mRNA levels of both claudin-1 and claudin-2 were observed in LK group.

Conclusions

Low potassium diet could increase intestinal permeability and thereby lead to bacterial translocation, which was suspected to result from impaired intestinal epithelial barrier and biological barrier.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol. 2012;3(1):27–43.CrossRef Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol. 2012;3(1):27–43.CrossRef
2.
go back to reference Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010: 305879.PubMedPubMedCentral Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010: 305879.PubMedPubMedCentral
3.
go back to reference Brandl K, Schnabi B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease? Expert Rev Gastroenterol Hepatol. 2015;9(8):1069–76.CrossRef Brandl K, Schnabi B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease? Expert Rev Gastroenterol Hepatol. 2015;9(8):1069–76.CrossRef
4.
go back to reference Wang YH. Current progress of research on intestinal bacterial translocation. Microb Pathog. 2021;152: 104652.CrossRef Wang YH. Current progress of research on intestinal bacterial translocation. Microb Pathog. 2021;152: 104652.CrossRef
5.
go back to reference Krentz T, Allen S. Bacterial translocation in critical illness. J Small Anim Pract. 2017;58(4):191–8.CrossRef Krentz T, Allen S. Bacterial translocation in critical illness. J Small Anim Pract. 2017;58(4):191–8.CrossRef
6.
go back to reference Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, Kulkarni OP, Mulay SR, Romoli S, Demleitner J, Schiller P, Dietrich A, Müller S, Gross O, Ruscheweyh H, Huson DH, Stecher B, Anders H. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017;28(1):76–83.CrossRef Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, Kulkarni OP, Mulay SR, Romoli S, Demleitner J, Schiller P, Dietrich A, Müller S, Gross O, Ruscheweyh H, Huson DH, Stecher B, Anders H. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017;28(1):76–83.CrossRef
7.
go back to reference Fukui H, Wiest R. Changes of intestinal functions in liver cirrhosis. Inflamm Intest Dis. 2016;1(1):24–40.CrossRef Fukui H, Wiest R. Changes of intestinal functions in liver cirrhosis. Inflamm Intest Dis. 2016;1(1):24–40.CrossRef
8.
go back to reference Garcia-Tsao G. Current management of the complications of cirrhosis and portal hypertension: variceal hemorrhage, ascites, and spontaneous bacterial peritonitis. Dig Dis. 2016;34(4):382–6.CrossRef Garcia-Tsao G. Current management of the complications of cirrhosis and portal hypertension: variceal hemorrhage, ascites, and spontaneous bacterial peritonitis. Dig Dis. 2016;34(4):382–6.CrossRef
9.
go back to reference Ghosh G, Jesudian AB. Small intestinal bacterial overgrowth in patients with cirrhosis. J Clin Exp Hepatol. 2019;9(2):257–67.CrossRef Ghosh G, Jesudian AB. Small intestinal bacterial overgrowth in patients with cirrhosis. J Clin Exp Hepatol. 2019;9(2):257–67.CrossRef
10.
go back to reference Andrade LS, Dalboni MA, Carvalho JTG, Grabulosa CC, Pereira NBF, Aoike DT, Cuppari L. In vitro effect of uremic serum on barrier function and inflammation in human colonocytes. J Bras Nefrol. 2018;40(3):217–24.CrossRef Andrade LS, Dalboni MA, Carvalho JTG, Grabulosa CC, Pereira NBF, Aoike DT, Cuppari L. In vitro effect of uremic serum on barrier function and inflammation in human colonocytes. J Bras Nefrol. 2018;40(3):217–24.CrossRef
11.
go back to reference Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, Kovesdy CP, Kline GA, Lindner G, Obrador GT, Palmer BF, Cheung M, Wheeler DC, Winkelmayer WC, Pecoits-Filho R, Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2020;97(1):42–61.CrossRef Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, Kovesdy CP, Kline GA, Lindner G, Obrador GT, Palmer BF, Cheung M, Wheeler DC, Winkelmayer WC, Pecoits-Filho R, Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2020;97(1):42–61.CrossRef
12.
go back to reference Szeto CC, Wong TY, Chow KM, Leung CB, Li PK. Are peritoneal dialysis patients with and without residual renal function equivalent for survival study? Insight from a retrospective review of the cause of death. Nephrol Dial Transplant. 2003;18(5):977–82.CrossRef Szeto CC, Wong TY, Chow KM, Leung CB, Li PK. Are peritoneal dialysis patients with and without residual renal function equivalent for survival study? Insight from a retrospective review of the cause of death. Nephrol Dial Transplant. 2003;18(5):977–82.CrossRef
13.
go back to reference Liu D, Lin Y, Gong N, Xiao Z, Xiao Z, Zhang F, Zhong X, Yi Z, Yang C, Zhang G, Ai J. Degree and duration of hypokalemia associated with peritonitis in patients undergoing peritoneal dialysis. Int J Clin Pract. 2021;75(8): e14188.CrossRef Liu D, Lin Y, Gong N, Xiao Z, Xiao Z, Zhang F, Zhong X, Yi Z, Yang C, Zhang G, Ai J. Degree and duration of hypokalemia associated with peritonitis in patients undergoing peritoneal dialysis. Int J Clin Pract. 2021;75(8): e14188.CrossRef
14.
go back to reference Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015;2015: 628157.CrossRef Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015;2015: 628157.CrossRef
15.
go back to reference Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.CrossRef Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.CrossRef
16.
go back to reference Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59.CrossRef Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59.CrossRef
17.
go back to reference Sigrid AR, Sonali PB, Jegan G, Sergey R, Eveline ES, Ayyappan KR. Na-K-ATPase regulates tight junction permeability through occluding phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G124–33.CrossRef Sigrid AR, Sonali PB, Jegan G, Sergey R, Eveline ES, Ayyappan KR. Na-K-ATPase regulates tight junction permeability through occluding phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G124–33.CrossRef
18.
go back to reference Chang CY, Tang CH, Hsin YH, Lai HT, Lee TH. FXYD2c plays a potential role in modulating Na(+)/K(+)-ATPase activity in HK-2 cells upon hypertonic challenge. J Membr Biol. 2014;247(1):93–105.CrossRef Chang CY, Tang CH, Hsin YH, Lai HT, Lee TH. FXYD2c plays a potential role in modulating Na(+)/K(+)-ATPase activity in HK-2 cells upon hypertonic challenge. J Membr Biol. 2014;247(1):93–105.CrossRef
19.
go back to reference Clausen MJ, Poulsen H. Sodium/potassium homeostasis in the cell. Met Ions Life Sci. 2013;12:41–67.CrossRef Clausen MJ, Poulsen H. Sodium/potassium homeostasis in the cell. Met Ions Life Sci. 2013;12:41–67.CrossRef
20.
go back to reference Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–9.CrossRef Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–9.CrossRef
21.
go back to reference Arlehamn CS, Pétrilli V, Gross O, Tschopp J, Evans TJ. The role of potassium in inflammasome activation by bacteria. J Biol Chem. 2010;285(14):10508–18.CrossRef Arlehamn CS, Pétrilli V, Gross O, Tschopp J, Evans TJ. The role of potassium in inflammasome activation by bacteria. J Biol Chem. 2010;285(14):10508–18.CrossRef
22.
go back to reference Fernández RG, Leehan JA, Pastrana RF, Muñiz RO. Effect of malnutrition on K+ current in T lymphocytes. Clin Diagn Lab Immunol. 2005;12(7):808–13.PubMedPubMedCentral Fernández RG, Leehan JA, Pastrana RF, Muñiz RO. Effect of malnutrition on K+ current in T lymphocytes. Clin Diagn Lab Immunol. 2005;12(7):808–13.PubMedPubMedCentral
23.
go back to reference Lim YF, Williams MA, Lentle RG, Janssen PW, Mansel BW, Keen SA, Chambers P. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula). J R Soc Interface. 2013;10(81):20121008.CrossRef Lim YF, Williams MA, Lentle RG, Janssen PW, Mansel BW, Keen SA, Chambers P. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula). J R Soc Interface. 2013;10(81):20121008.CrossRef
24.
go back to reference Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol. 2004;6(8):783–93.CrossRef Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol. 2004;6(8):783–93.CrossRef
25.
go back to reference Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest. 2005;85(10):1308–24.CrossRef Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest. 2005;85(10):1308–24.CrossRef
26.
go back to reference Wu Z, Nybom P, Magnusson KE. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000;2(1):11–7.CrossRef Wu Z, Nybom P, Magnusson KE. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000;2(1):11–7.CrossRef
27.
go back to reference Xu CM, Li XM, Qin BZ, Liu B. Effect of tight junction protein of intestinal epithelium and permeability of colonic mucosa in pathogenesis of injured colonic barrier during chronic recovery stage of rats with inflammatory bowel disease. Asian Pac J Trop Med. 2016;9(2):148–52.CrossRef Xu CM, Li XM, Qin BZ, Liu B. Effect of tight junction protein of intestinal epithelium and permeability of colonic mucosa in pathogenesis of injured colonic barrier during chronic recovery stage of rats with inflammatory bowel disease. Asian Pac J Trop Med. 2016;9(2):148–52.CrossRef
28.
go back to reference Du PJ, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, van Wyk SG, Vieira W, Pretorius E, Beukes M, Farré R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol. 2013;58(6):1125–32.CrossRef Du PJ, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, van Wyk SG, Vieira W, Pretorius E, Beukes M, Farré R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol. 2013;58(6):1125–32.CrossRef
29.
go back to reference Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res. 2015;37(2):209–22.PubMedPubMedCentral Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res. 2015;37(2):209–22.PubMedPubMedCentral
30.
go back to reference Ducatelle R, Eeckhaut V, Haesebrouck F, Van Immerseel F. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal. 2015;9(1):43–8.CrossRef Ducatelle R, Eeckhaut V, Haesebrouck F, Van Immerseel F. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal. 2015;9(1):43–8.CrossRef
31.
go back to reference Nissen L, Chingwaru W, Sgorbati B, Biavati B, Cencic A. Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: a functional study in the small intestinal cell model. Int J Food Microbiol. 2009;135(3):288–94.CrossRef Nissen L, Chingwaru W, Sgorbati B, Biavati B, Cencic A. Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: a functional study in the small intestinal cell model. Int J Food Microbiol. 2009;135(3):288–94.CrossRef
32.
go back to reference Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.CrossRef Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.CrossRef
33.
go back to reference Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol. 2010;26(6):564–71.CrossRef Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol. 2010;26(6):564–71.CrossRef
34.
go back to reference Shu KH, Chang CS, Chuang YW, Chen CH, Cheng CH, Wu MJ. Intestinal bacterial overgrowth in CAPD patients with hypokalaemia. Nephrol Dial Transplant. 2009;24(4):1289–92.CrossRef Shu KH, Chang CS, Chuang YW, Chen CH, Cheng CH, Wu MJ. Intestinal bacterial overgrowth in CAPD patients with hypokalaemia. Nephrol Dial Transplant. 2009;24(4):1289–92.CrossRef
35.
go back to reference De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critially ill patients: effect of glutamine. Cit Care Med. 2005;33(5):1125.CrossRef De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critially ill patients: effect of glutamine. Cit Care Med. 2005;33(5):1125.CrossRef
Metadata
Title
Low potassium disrupt intestinal barrier and result in bacterial translocation
Authors
Haishan Wu
Rong Huang
Jinjin Fan
Ning Luo
Xiao Yang
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Hypokalemia
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03499-0

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine