Skip to main content
Top
Published in: Obesity Surgery 9/2018

01-09-2018 | Original Contributions

Hypoglycemic Effects of Intestinal Electrical Stimulation by Enhancing Nutrient-Stimulated Secretion of GLP-1 in Rats

Authors: Feng Ye, Yi Liu, Shiying Li, Jiande D. Z. Chen

Published in: Obesity Surgery | Issue 9/2018

Login to get access

Abstract

Purpose

To find out the best location for intestinal electrical stimulation (IES) to decrease hyperglycemia, and mechanisms involving intraluminal nutrients and plasma glucagon-like peptide-1 (GLP-1)

Materials and Methods

Eight rats had electrodes implanted at the duodenum and ileums for IES. The oral glucose tolerance test (OGTT) was performed with IES and sham-IES and with/without GLP-1 antagonist, exendin. To study the role of intraluminal nutrients, the experiment was repeated using intraperitoneal glucose tolerance test (IPGTT). Glucagon was administrated in the OGTT/IPGTT to induce temporary hyperglycemia.

Results

(1) In the OGTT, IES at the duodenum reduced blood glucose from 30 to 120 min after oral glucose (P < 0.05, vs. sham-IES) and the hypoglycemic effect was more potent than IES at the ileum. (2) The hypoglycemic effect of IES was absent in IPGTT experiment, suggesting the important role of intraluminal nutrients. (3) An increase in GLP-1 was noted in the OGTT with IES at the duodenum in comparison with sham-IES. Moreover, the blocking effect of exendin suggested the role of GLP-1 in the hypoglycemic effect of IES.

Conclusions

The best stimulation location for IES to decrease hyperglycemia is in the duodenum. The hypoglycemic effect of IES is attributed to the enhancement in nutrient-stimulated release of GLP-1.
Literature
1.
go back to reference Pfeiffer AF, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int. 2014;111(5):69–81. quiz 82 Pfeiffer AF, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int. 2014;111(5):69–81. quiz 82
2.
go back to reference Puzziferri N, Roshek 3rd TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42.CrossRef Puzziferri N, Roshek 3rd TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42.CrossRef
3.
go back to reference Maggard-Gibbons M, Maglione M, Livhits M, et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013;309(21):2250–61.CrossRef Maggard-Gibbons M, Maglione M, Livhits M, et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013;309(21):2250–61.CrossRef
4.
go back to reference Qaseem A, Barry MJ, Humphrey LL, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(4):279–90.CrossRef Qaseem A, Barry MJ, Humphrey LL, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(4):279–90.CrossRef
5.
go back to reference Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.CrossRef Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.CrossRef
6.
go back to reference Chen JD, Yin J, Wei W. Electrical therapies for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol. 2017;11(5):407–18.CrossRef Chen JD, Yin J, Wei W. Electrical therapies for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol. 2017;11(5):407–18.CrossRef
7.
go back to reference Zhao X, Yin J, Chen J, et al. Inhibitory effects and mechanisms of intestinal electrical stimulation on gastric tone, antral contractions, pyloric tone, and gastric emptying in dogs. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R36–42.CrossRef Zhao X, Yin J, Chen J, et al. Inhibitory effects and mechanisms of intestinal electrical stimulation on gastric tone, antral contractions, pyloric tone, and gastric emptying in dogs. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R36–42.CrossRef
8.
go back to reference Li S, Zhu W, Zhang S, et al. Chronic intestinal electrical stimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats. Obesity (Silver Spring). 2017;25(6):1061–8.CrossRef Li S, Zhu W, Zhang S, et al. Chronic intestinal electrical stimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats. Obesity (Silver Spring). 2017;25(6):1061–8.CrossRef
9.
go back to reference Wan X, Yin J, Foreman R, et al. An optimized IES method and its inhibitory effects and mechanisms on food intake and body weight in diet-induced obese rats: IES for obesity. Obes Surg. 2017;27(12):3215–22. Wan X, Yin J, Foreman R, et al. An optimized IES method and its inhibitory effects and mechanisms on food intake and body weight in diet-induced obese rats: IES for obesity. Obes Surg. 2017;27(12):3215–22.
10.
go back to reference Ouyang X, Li S, Foreman R, et al. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27(3):406–15.CrossRef Ouyang X, Li S, Foreman R, et al. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27(3):406–15.CrossRef
11.
go back to reference Khawaled R, Blumen G, Fabricant G, et al. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5(6):692–7.CrossRef Khawaled R, Blumen G, Fabricant G, et al. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5(6):692–7.CrossRef
12.
go back to reference Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.CrossRef Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.CrossRef
13.
go back to reference Li S, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2017;27(1):70–7.CrossRef Li S, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2017;27(1):70–7.CrossRef
14.
go back to reference Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150(4):1680–7.CrossRef Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology. 2009;150(4):1680–7.CrossRef
15.
go back to reference Gibbons CH, Goebel-Fabbri A. Microvascular complications associated with rapid improvements in glycemic control in diabetes. Curr Diab Rep. 2017;17(7):48.CrossRef Gibbons CH, Goebel-Fabbri A. Microvascular complications associated with rapid improvements in glycemic control in diabetes. Curr Diab Rep. 2017;17(7):48.CrossRef
16.
go back to reference Kawanami D, Matoba K, Sango K, et al. Incretin-based therapies for diabetic complications: basic mechanisms and clinical evidence. Int J Mol Sci. 2016;17(8). Kawanami D, Matoba K, Sango K, et al. Incretin-based therapies for diabetic complications: basic mechanisms and clinical evidence. Int J Mol Sci. 2016;17(8).
17.
go back to reference Pecoits-Filho R, Abensur H, Betônico CC, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr. 2016;8:50.CrossRef Pecoits-Filho R, Abensur H, Betônico CC, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr. 2016;8:50.CrossRef
18.
go back to reference Azami M, Sharifi A, Norozi S, et al. Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in patients with thalassemia major in Iran: a meta-analysis study. Caspian J Intern Med. 2017;8(1):1–15. Azami M, Sharifi A, Norozi S, et al. Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in patients with thalassemia major in Iran: a meta-analysis study. Caspian J Intern Med. 2017;8(1):1–15.
19.
go back to reference Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Med. 2017;130(6S):S4–17.CrossRef Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Med. 2017;130(6S):S4–17.CrossRef
20.
go back to reference Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R78–82.CrossRef Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R78–82.CrossRef
21.
go back to reference Aberle J, Busch P, Veigel J, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg. 2016;26(2):369–75.CrossRef Aberle J, Busch P, Veigel J, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg. 2016;26(2):369–75.CrossRef
22.
go back to reference Mearin F, Camilleri M, Malagelada JR. Pyloric dysfunction in diabetics with recurrent nausea and vomiting. Gastroenterology. 1986;90(6):1919–25.CrossRef Mearin F, Camilleri M, Malagelada JR. Pyloric dysfunction in diabetics with recurrent nausea and vomiting. Gastroenterology. 1986;90(6):1919–25.CrossRef
23.
go back to reference Horowitz M, Edelbroek M, Fraser R, et al. Disordered gastric motor function in diabetes mellitus. Recent insights into prevalence, pathophysiology, clinical relevance, and treatment. Scand J Gastroenterol. 1991;26(7):673–84.CrossRef Horowitz M, Edelbroek M, Fraser R, et al. Disordered gastric motor function in diabetes mellitus. Recent insights into prevalence, pathophysiology, clinical relevance, and treatment. Scand J Gastroenterol. 1991;26(7):673–84.CrossRef
24.
go back to reference Steinberg BE, Glass L, Shrier A, et al. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue. Philos Trans A Math Phys Eng Sci. 2006;364(1842):1299–311.CrossRef Steinberg BE, Glass L, Shrier A, et al. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue. Philos Trans A Math Phys Eng Sci. 2006;364(1842):1299–311.CrossRef
25.
go back to reference Camilleri M, Malagelada JR. Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Investig. 1984;14(6):420–7.CrossRef Camilleri M, Malagelada JR. Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Investig. 1984;14(6):420–7.CrossRef
26.
go back to reference Nowak TV, Harrington B, Kalbfleisch JH, et al. Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology. 1986;91(1):124–32.CrossRef Nowak TV, Harrington B, Kalbfleisch JH, et al. Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology. 1986;91(1):124–32.CrossRef
27.
go back to reference Wang WF, Yin JY, De Dz Chen J. Acceleration of small bowel transit in a canine hypermotility model with intestinal electrical stimulation. J Dig Dis. 2015;16(3):135–42.CrossRef Wang WF, Yin JY, De Dz Chen J. Acceleration of small bowel transit in a canine hypermotility model with intestinal electrical stimulation. J Dig Dis. 2015;16(3):135–42.CrossRef
28.
go back to reference Sun Y, Chen JD. Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats. Int J Obes. 2009;33(8):817–23.CrossRef Sun Y, Chen JD. Intestinal electric stimulation accelerates whole gut transit and promotes fat excrement in conscious rats. Int J Obes. 2009;33(8):817–23.CrossRef
29.
go back to reference Foster C, Costill DL, Fink WJ. Gastric emptying characteristics of glucose and glucose polymer solutions. Res Q Exerc Sport. 1980;51(2):299–305.CrossRef Foster C, Costill DL, Fink WJ. Gastric emptying characteristics of glucose and glucose polymer solutions. Res Q Exerc Sport. 1980;51(2):299–305.CrossRef
30.
go back to reference Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.CrossRef Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.CrossRef
31.
go back to reference Gribble FM, Reimann F. Signalling in the gut endocrine axis. Physiol Behav. 2017;176:183–8.CrossRef Gribble FM, Reimann F. Signalling in the gut endocrine axis. Physiol Behav. 2017;176:183–8.CrossRef
32.
go back to reference Vahl T, D'Alessio D. Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):461–8. Vahl T, D'Alessio D. Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):461–8.
33.
go back to reference MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(Suppl 3):S434–42.CrossRef MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(Suppl 3):S434–42.CrossRef
34.
go back to reference Orskov C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia. 1992;35(8):701–11. Orskov C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia. 1992;35(8):701–11.
35.
go back to reference Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev. 2002;18(6):451–63.CrossRef Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev. 2002;18(6):451–63.CrossRef
36.
go back to reference Kim DS, Choi HI, Wang Y, et al. A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. 2017;26(9):1560–71.CrossRef Kim DS, Choi HI, Wang Y, et al. A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. 2017;26(9):1560–71.CrossRef
37.
go back to reference Mojsov S, Weir GC, Habener J. Insulinotropin: glucagon-like peptide 1 (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79(2):616–9.CrossRef Mojsov S, Weir GC, Habener J. Insulinotropin: glucagon-like peptide 1 (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79(2):616–9.CrossRef
38.
go back to reference Yin J, Kuang J, Chandalia MT, et al. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R332–9.CrossRef Yin J, Kuang J, Chandalia MT, et al. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R332–9.CrossRef
39.
go back to reference Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest. 2005;115(12):3554–63.CrossRef Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest. 2005;115(12):3554–63.CrossRef
40.
go back to reference Guglielmi V, Sbraccia P. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products. Eat Weight Disord. 2017;22(2):231–40.CrossRef Guglielmi V, Sbraccia P. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products. Eat Weight Disord. 2017;22(2):231–40.CrossRef
41.
go back to reference Wootten D, Reynolds CA, Smith KJ, et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem Pharmacol. 2016;118:68–87.CrossRef Wootten D, Reynolds CA, Smith KJ, et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem Pharmacol. 2016;118:68–87.CrossRef
42.
go back to reference Nance KD, Days EL, Weaver CD, et al. Discovery of a novel series of orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonists based on a 1,3-disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione core. J Med Chem. 2017;60(4):1611–6.CrossRef Nance KD, Days EL, Weaver CD, et al. Discovery of a novel series of orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonists based on a 1,3-disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione core. J Med Chem. 2017;60(4):1611–6.CrossRef
Metadata
Title
Hypoglycemic Effects of Intestinal Electrical Stimulation by Enhancing Nutrient-Stimulated Secretion of GLP-1 in Rats
Authors
Feng Ye
Yi Liu
Shiying Li
Jiande D. Z. Chen
Publication date
01-09-2018
Publisher
Springer US
Published in
Obesity Surgery / Issue 9/2018
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-018-3257-1

Other articles of this Issue 9/2018

Obesity Surgery 9/2018 Go to the issue