Skip to main content
Top
Published in: Environmental Health and Preventive Medicine 1/2020

Open Access 01-12-2020 | Hypertension | Review article

Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate

Author: Koji Ito

Published in: Environmental Health and Preventive Medicine | Issue 1/2020

Login to get access

Abstract

High salt intake increases blood pressure, and dietary salt intake has been clearly demonstrated to be associated with hypertension incidence. Japanese people consume higher amounts of salt than Westerners. It has been reported that miso soup was one of the major sources of daily salt intake in Japanese people. Adding salt is indispensable to make miso, and therefore, in some cases, refraining from miso soup is recommended to reduce dietary salt intake. However, recent studies using salt-sensitive hypertensive models have revealed that miso lessens the effects of salt on blood pressure. In other word, the intake of miso dose not increase the blood pressure compared to the equivalent intake of salt. In addition, many clinical observational studies have demonstrated the absence of a relationship between the frequency of miso soup intake and blood pressure levels or hypertension incidence. The mechanism of this phenomenon seen in the subjects with miso soup intake has not been fully elucidated yet. However, in basic studies, it was found that the ingredients of miso attenuate sympathetic nerve activity, resulting in lowered blood pressure and heart rate. Therefore, this review focused on the differences between the effects of miso intake and those of the equivalent salt intake on sympathetic nerve activity, blood pressure, and heart rate.
Literature
1.
go back to reference Kannel WB. Role of blood pressure in cardiovascular morbidity and mortality. Prog Cardiovasc Dis. 1974;17:5–24.PubMedCrossRef Kannel WB. Role of blood pressure in cardiovascular morbidity and mortality. Prog Cardiovasc Dis. 1974;17:5–24.PubMedCrossRef
2.
go back to reference Smirk FH. The prognosis of untreated and treated hypertension and advantages of early treatment. Am Heart J. 1972;83:825–40.PubMedCrossRef Smirk FH. The prognosis of untreated and treated hypertension and advantages of early treatment. Am Heart J. 1972;83:825–40.PubMedCrossRef
4.
go back to reference Garfinkle MA. Salt and essential hypertension: pathophysiology and implication for treatment. J Am Soc Hypertens. 2017;11:385–91.PubMedCrossRef Garfinkle MA. Salt and essential hypertension: pathophysiology and implication for treatment. J Am Soc Hypertens. 2017;11:385–91.PubMedCrossRef
5.
go back to reference Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients. 2019;11:E1970.PubMedCrossRef Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients. 2019;11:E1970.PubMedCrossRef
6.
go back to reference Stamler J. The INTERSALT study: background, findings, and implications. Am J Clin Nutr. 1997;65(Suppl):626S–42S.PubMedCrossRef Stamler J. The INTERSALT study: background, findings, and implications. Am J Clin Nutr. 1997;65(Suppl):626S–42S.PubMedCrossRef
7.
go back to reference Takachi R, Inoue M, Shimazu T, Sasazuki S, Ishihara J, Sawada N, Yamaji T, Iwasaki M, Iso H, Tsubono Y, Tsugane S, Japan Public Health Center-based Prospective Study Group. Consumption of sodium and salted foods in relation to cancer and cardiovascular disease: the Japan Public Health Center-based prospective study. Am J Clin Nutr. 2010;91:456–64.PubMedCrossRef Takachi R, Inoue M, Shimazu T, Sasazuki S, Ishihara J, Sawada N, Yamaji T, Iwasaki M, Iso H, Tsubono Y, Tsugane S, Japan Public Health Center-based Prospective Study Group. Consumption of sodium and salted foods in relation to cancer and cardiovascular disease: the Japan Public Health Center-based prospective study. Am J Clin Nutr. 2010;91:456–64.PubMedCrossRef
8.
go back to reference Frisoli TM, Schmieder RE, Grodzicki T, Messerli FH. Salt and hypertension: is salt dietary reduction worth the efforts? Am J Med. 2012;125:433–9.PubMedCrossRef Frisoli TM, Schmieder RE, Grodzicki T, Messerli FH. Salt and hypertension: is salt dietary reduction worth the efforts? Am J Med. 2012;125:433–9.PubMedCrossRef
9.
go back to reference Wang M, Moran AE, Liu J, Qi Y, Xie W, Tzong K, Zhao D. A meta-analysis of effect of dietary salt restriction in blood pressure in Chinease adults. Glob Heart. 2015;10:291–9.PubMedCrossRef Wang M, Moran AE, Liu J, Qi Y, Xie W, Tzong K, Zhao D. A meta-analysis of effect of dietary salt restriction in blood pressure in Chinease adults. Glob Heart. 2015;10:291–9.PubMedCrossRef
10.
go back to reference Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet in blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017;4:CD004022.PubMed Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet in blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017;4:CD004022.PubMed
11.
12.
go back to reference Fujita M, Fujita T. The role of CNS in salt-sensitive hypertension. Curr Hypertens Rep. 2013;15:390–4.PubMedCrossRef Fujita M, Fujita T. The role of CNS in salt-sensitive hypertension. Curr Hypertens Rep. 2013;15:390–4.PubMedCrossRef
13.
go back to reference Voora R, Hinderliter AL. Modulation of sympathetic overactivity to treat resistant hypertension. Curr Hypertens Rep. 2018;20:92.PubMedCrossRef Voora R, Hinderliter AL. Modulation of sympathetic overactivity to treat resistant hypertension. Curr Hypertens Rep. 2018;20:92.PubMedCrossRef
14.
go back to reference Zhou JJ, Ma HJ, Shao JY, Pan HL, Li DP. Impaired hypothalamic regulation of sympathetic outflow in primary hypertension. Neurosci Bull. 2019;35:124–32.PubMedCrossRef Zhou JJ, Ma HJ, Shao JY, Pan HL, Li DP. Impaired hypothalamic regulation of sympathetic outflow in primary hypertension. Neurosci Bull. 2019;35:124–32.PubMedCrossRef
15.
go back to reference Huang BS, Van Vliet BN, Leenen FH. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am J Physiol Heart Circ Physiol. 2004;287:H1160–6.PubMedCrossRef Huang BS, Van Vliet BN, Leenen FH. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am J Physiol Heart Circ Physiol. 2004;287:H1160–6.PubMedCrossRef
16.
go back to reference Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension: focus on the brain. Curr Opin Nephrol Hypertens. 2017;26:106–13.PubMed Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension: focus on the brain. Curr Opin Nephrol Hypertens. 2017;26:106–13.PubMed
17.
go back to reference Ito K, Hirooka Y, Sunagawa K. Acquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload. Circ Res. 2009;104:1004–11.PubMedCrossRef Ito K, Hirooka Y, Sunagawa K. Acquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload. Circ Res. 2009;104:1004–11.PubMedCrossRef
18.
go back to reference Ito K, Hirooka Y, Sunagawa K. Blockade of mineralocorticoid receptors improves salt-induced left-ventricular systolic dysfunction through attenuation of enhanced sympathetic drive in mice with pressure overload. J Hypertens. 2010;28:1449–58.PubMedCrossRef Ito K, Hirooka Y, Sunagawa K. Blockade of mineralocorticoid receptors improves salt-induced left-ventricular systolic dysfunction through attenuation of enhanced sympathetic drive in mice with pressure overload. J Hypertens. 2010;28:1449–58.PubMedCrossRef
19.
go back to reference Nakano M, Hirooka Y, Matsukawa R, Ito K, Sunagawa K. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2013;36:277–84.PubMedCrossRef Nakano M, Hirooka Y, Matsukawa R, Ito K, Sunagawa K. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2013;36:277–84.PubMedCrossRef
20.
go back to reference Ito K, Hirooka Y, Nakano M, Honda N, Matsukawa R, Sunagawa K. Role of hypothalamic angiotensin type 1 receptors in pressure overload-induced mineralocorticoid receptor activation and salt-induced sympathoexcitation. Hypertens Res. 2013;36:513–9.PubMedCrossRef Ito K, Hirooka Y, Nakano M, Honda N, Matsukawa R, Sunagawa K. Role of hypothalamic angiotensin type 1 receptors in pressure overload-induced mineralocorticoid receptor activation and salt-induced sympathoexcitation. Hypertens Res. 2013;36:513–9.PubMedCrossRef
21.
go back to reference Wang HW, Huang BS, Chen A, Ahmad M, White RA, Leenen FH. Role of brain aldosterone and mineralocorticoid receptors in aldosterone-salt hypertension in rats. Neuroscience. 2016;314:90–105.PubMedCrossRef Wang HW, Huang BS, Chen A, Ahmad M, White RA, Leenen FH. Role of brain aldosterone and mineralocorticoid receptors in aldosterone-salt hypertension in rats. Neuroscience. 2016;314:90–105.PubMedCrossRef
22.
go back to reference Huang BS, White RA, Ahmad M, Jeng AY, Leenen FH. Central infusion of aldosterone synthase inhibitor prevents sympathetic hyperactivity and hypertension by central Na+ in Wister rats. Am J Phys Regul Integr Comp Phys. 2008;295:R166–72. Huang BS, White RA, Ahmad M, Jeng AY, Leenen FH. Central infusion of aldosterone synthase inhibitor prevents sympathetic hyperactivity and hypertension by central Na+ in Wister rats. Am J Phys Regul Integr Comp Phys. 2008;295:R166–72.
24.
go back to reference Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D, Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3:e003733.PubMedPubMedCentralCrossRef Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D, Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3:e003733.PubMedPubMedCentralCrossRef
25.
go back to reference Wakasugi M, James Kazama J, Narita I. Associations between the intake of miso soup and Japanese pickles and the estimated 24-hour urinary sodium excretion: a population-based cross sectional study. Intern Med. 2015;54:903–10.PubMedCrossRef Wakasugi M, James Kazama J, Narita I. Associations between the intake of miso soup and Japanese pickles and the estimated 24-hour urinary sodium excretion: a population-based cross sectional study. Intern Med. 2015;54:903–10.PubMedCrossRef
26.
go back to reference Okada E, Nakamura K, Ukawa S, Wakai K, Date C, Iso H, Tamakoshi A. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan Collaborative Cohort Study. Br J Nutr. 2018;120:464–71.PubMedCrossRef Okada E, Nakamura K, Ukawa S, Wakai K, Date C, Iso H, Tamakoshi A. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan Collaborative Cohort Study. Br J Nutr. 2018;120:464–71.PubMedCrossRef
27.
go back to reference Zhang S, Tomata Y, Sugawara Y, Tsuduki T, Tsuji I. The Japanese dietary pattern is associated with longer disability-free survival time in the general elderly population in the Ohsaki Cohort 2006 Study. J Nutr. 2019;149:1245–51.PubMedCrossRef Zhang S, Tomata Y, Sugawara Y, Tsuduki T, Tsuji I. The Japanese dietary pattern is associated with longer disability-free survival time in the general elderly population in the Ohsaki Cohort 2006 Study. J Nutr. 2019;149:1245–51.PubMedCrossRef
28.
go back to reference Suzuki N, Goto Y, Ota H, Kito K, Mano F, Joo E, Ikeda K, Inagaki N, Nakayama T. Characteristics of the Japanese diet described in epidemiologic publications: a qualitative systematic review. J Nutr Sci Vitaminol. 2018;64:129–37.PubMedCrossRef Suzuki N, Goto Y, Ota H, Kito K, Mano F, Joo E, Ikeda K, Inagaki N, Nakayama T. Characteristics of the Japanese diet described in epidemiologic publications: a qualitative systematic review. J Nutr Sci Vitaminol. 2018;64:129–37.PubMedCrossRef
29.
go back to reference Jayachandran M, Xu B. A insight into the health benefits of fermented soy products. Food Chem. 2019;271:362–71.PubMedCrossRef Jayachandran M, Xu B. A insight into the health benefits of fermented soy products. Food Chem. 2019;271:362–71.PubMedCrossRef
30.
go back to reference Nozue M, Shimazu T, Sasazuki S, Charvat H, Mori N, Mutoh M, Sawada N, Iwasaki M, Yamaji T, Inoue M, Kokubo Y, Yamagishi K, Iso H, Tsugane S. Fermented soy product intake is inversely associated with the development of high blood pressure: the Japan Public Health Center-based Prospective Study. J Nutr. 2017;147:1749–56.PubMed Nozue M, Shimazu T, Sasazuki S, Charvat H, Mori N, Mutoh M, Sawada N, Iwasaki M, Yamaji T, Inoue M, Kokubo Y, Yamagishi K, Iso H, Tsugane S. Fermented soy product intake is inversely associated with the development of high blood pressure: the Japan Public Health Center-based Prospective Study. J Nutr. 2017;147:1749–56.PubMed
31.
go back to reference Watanabe H, Kashimoto N, Kajimura J, Kamiya K. A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats. Hypertens Res. 2006;29:731–8.PubMedCrossRef Watanabe H, Kashimoto N, Kajimura J, Kamiya K. A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats. Hypertens Res. 2006;29:731–8.PubMedCrossRef
32.
go back to reference Yoshinaga M, Toda N, Tamura Y, Terakado S, Ueno M, Otsuka K, Numabe A, Kawabata Y, Uehara Y. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats. Nutrition. 2012;28:924–31.PubMedCrossRef Yoshinaga M, Toda N, Tamura Y, Terakado S, Ueno M, Otsuka K, Numabe A, Kawabata Y, Uehara Y. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats. Nutrition. 2012;28:924–31.PubMedCrossRef
33.
go back to reference Tomari HS, Uchikawa M, Yamazaki A, Hirabayashi S, Yamakawa S, Kitagawa M, Yamada M, Itou S, Yamamoto T, Uehara Y. Newly manufactured Marukome MK-34-1 miso with angiotensin-converting enzyme inhibitory activity and its antihypertensive effects in genetic hypertensive rat models. Hypertens Res. 2019;42:790–800.PubMedCrossRefPubMedCentral Tomari HS, Uchikawa M, Yamazaki A, Hirabayashi S, Yamakawa S, Kitagawa M, Yamada M, Itou S, Yamamoto T, Uehara Y. Newly manufactured Marukome MK-34-1 miso with angiotensin-converting enzyme inhibitory activity and its antihypertensive effects in genetic hypertensive rat models. Hypertens Res. 2019;42:790–800.PubMedCrossRefPubMedCentral
34.
go back to reference Watanabe H, Sasatani M, Doi T, Masaki T, Satoh K, Yoshizumi M. Protective effects of Japanese soybean paste (Miso) on stroke in stroke-prone spontaneously hypertensive rats (SHRSP). Am J Hypertens. 2017;8(31):43–7. Watanabe H, Sasatani M, Doi T, Masaki T, Satoh K, Yoshizumi M. Protective effects of Japanese soybean paste (Miso) on stroke in stroke-prone spontaneously hypertensive rats (SHRSP). Am J Hypertens. 2017;8(31):43–7.
35.
go back to reference Ito K, Hirooka Y, Sunagawa K. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload. Fukuoka Acta Medica. 2014;105:48–56. Ito K, Hirooka Y, Sunagawa K. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload. Fukuoka Acta Medica. 2014;105:48–56.
36.
go back to reference Kitagawa M, Itoh K, Yamada M, Koike S, Yamamoto T, Uehara Y. Long term intake of miso soup unaffected blood pressure in subjects with normal or stage I hypertension-double blind comparative interventional trial. Jpn Pharmacol Ther. 2016;44:1601–12. Kitagawa M, Itoh K, Yamada M, Koike S, Yamamoto T, Uehara Y. Long term intake of miso soup unaffected blood pressure in subjects with normal or stage I hypertension-double blind comparative interventional trial. Jpn Pharmacol Ther. 2016;44:1601–12.
37.
go back to reference Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S, JPHC Study Group. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarction in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation. 2007;116:2553–262.PubMedCrossRef Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S, JPHC Study Group. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarction in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation. 2007;116:2553–262.PubMedCrossRef
38.
go back to reference Ito K, Miyata K, Mohri M, Origuchi H, Yamamoto H. The effects of the habitual consumption of miso soup on the blood pressure and heart rate of Japanese adults: a cross-sectional study of a health examination. Intern Med. 2017;56:23–9.PubMedPubMedCentralCrossRef Ito K, Miyata K, Mohri M, Origuchi H, Yamamoto H. The effects of the habitual consumption of miso soup on the blood pressure and heart rate of Japanese adults: a cross-sectional study of a health examination. Intern Med. 2017;56:23–9.PubMedPubMedCentralCrossRef
39.
go back to reference Arntz HR, Willich SN, Schreiber C, Brüggemann T, Stern R, Schultheiss HP. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J. 2000;21:315–20.PubMedCrossRef Arntz HR, Willich SN, Schreiber C, Brüggemann T, Stern R, Schultheiss HP. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J. 2000;21:315–20.PubMedCrossRef
40.
go back to reference Manfredini R, Fabbian F, Pala M, Tiseo R, De Giorgi A, Manfredini F, Malagoni AM, Signani F, Andreati C, Boari B, Salmi R, Imberti D, Gallerani M. Seasonal and weekly patterns of occurrence of acute cardiovascular disease: dose a gender difference exist? J Women's Health. 2011;20:1663–8.CrossRef Manfredini R, Fabbian F, Pala M, Tiseo R, De Giorgi A, Manfredini F, Malagoni AM, Signani F, Andreati C, Boari B, Salmi R, Imberti D, Gallerani M. Seasonal and weekly patterns of occurrence of acute cardiovascular disease: dose a gender difference exist? J Women's Health. 2011;20:1663–8.CrossRef
41.
go back to reference Sinha P, Taneja DK, Singh NP, Saha R. Seasonal variation in prevalence of hypertension: implications for interpretation. Indian J Public Health. 2010;54:7–10.PubMedCrossRef Sinha P, Taneja DK, Singh NP, Saha R. Seasonal variation in prevalence of hypertension: implications for interpretation. Indian J Public Health. 2010;54:7–10.PubMedCrossRef
42.
go back to reference Sharma BK, Sagar S, Sood GK, Varma S, Kalra OP. Seasonal variations of arterial pressure in normotensive and essential hypertensives. Indian Heart J. 1990;42:66–72.PubMed Sharma BK, Sagar S, Sood GK, Varma S, Kalra OP. Seasonal variations of arterial pressure in normotensive and essential hypertensives. Indian Heart J. 1990;42:66–72.PubMed
43.
go back to reference Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.PubMedCrossRef Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.PubMedCrossRef
44.
go back to reference Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.CrossRefPubMed Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.CrossRefPubMed
45.
46.
go back to reference Ito K, Miyata K, Mohri M, Origuchi H, Yamamoto H. Relationship between miso soup consumption and blood pressure or heart rate of Japanese adults: a cross-sectional study divided into four seasons. JJCDP. 2017;52:82–93. Ito K, Miyata K, Mohri M, Origuchi H, Yamamoto H. Relationship between miso soup consumption and blood pressure or heart rate of Japanese adults: a cross-sectional study divided into four seasons. JJCDP. 2017;52:82–93.
47.
go back to reference Grassi G, Vailati S, Bertinieri G, Seravalle G, Stella ML, Dell'Oro R, Mancia G. Heart rate as marker of sympathetic activity. J Hypertens. 1998;16:1635–9.PubMedCrossRef Grassi G, Vailati S, Bertinieri G, Seravalle G, Stella ML, Dell'Oro R, Mancia G. Heart rate as marker of sympathetic activity. J Hypertens. 1998;16:1635–9.PubMedCrossRef
48.
go back to reference Ito K, Hirooka Y, Sunagawa K. Japanese soybean paste miso lessens sympathovagal imbalance and attenuates brain sodium sensitivity in mice with pressure overload. Fukuoka Acta Medica. 2015;106:54–63. Ito K, Hirooka Y, Sunagawa K. Japanese soybean paste miso lessens sympathovagal imbalance and attenuates brain sodium sensitivity in mice with pressure overload. Fukuoka Acta Medica. 2015;106:54–63.
49.
go back to reference Kondo H, Sakuyama Tomari H, Yamakawa S, Kitagawa M, Yamada M, Itou S, Yamamoto T, Uehara Y. Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertens Res. 2019. https://doi.org/10.1038/s41440-019-0304-9. Kondo H, Sakuyama Tomari H, Yamakawa S, Kitagawa M, Yamada M, Itou S, Yamamoto T, Uehara Y. Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertens Res. 2019. https://​doi.​org/​10.​1038/​s41440-019-0304-9.
50.
go back to reference Huikuri HV, Pikkujämsä SM, Airaksinen KE, Ikäheimo MJ, Rantala AO, Kauma H, Lilja M, Kesäniemi YA. Sex-related differences in autonomic modulation of heart rate in middle-age subjects. Circulation. 1996;94:122–5.PubMedCrossRef Huikuri HV, Pikkujämsä SM, Airaksinen KE, Ikäheimo MJ, Rantala AO, Kauma H, Lilja M, Kesäniemi YA. Sex-related differences in autonomic modulation of heart rate in middle-age subjects. Circulation. 1996;94:122–5.PubMedCrossRef
51.
go back to reference Pamidimukkala J, Taylor JA, Welshons WV, Lubahn DB, Hay M. Estrogen modulation of baroreflex function in conscious mice. Am J Phys Regul Integr Comp Phys. 2003;284:R983–9. Pamidimukkala J, Taylor JA, Welshons WV, Lubahn DB, Hay M. Estrogen modulation of baroreflex function in conscious mice. Am J Phys Regul Integr Comp Phys. 2003;284:R983–9.
52.
go back to reference Sagara Y, Hirooka Y, Nozoe M, Ito K, Kimura Y, Sunagawa K. Pressor response induced by central angiotensin II is mediated by activation of Rho/Rho-kinase pathway via AT1 receptors. J Hypertens. 2007;25:399–406.PubMedCrossRef Sagara Y, Hirooka Y, Nozoe M, Ito K, Kimura Y, Sunagawa K. Pressor response induced by central angiotensin II is mediated by activation of Rho/Rho-kinase pathway via AT1 receptors. J Hypertens. 2007;25:399–406.PubMedCrossRef
53.
go back to reference Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol. 2011;95:89–103.PubMedCrossRef Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol. 2011;95:89–103.PubMedCrossRef
54.
go back to reference Inoue K, Gotou T, Kitajima H, Mizuno S, Nakazawa T, Yamamoto N. Release of antihypertensive peptides in miso paste during its fermentation, by the addition of casein. J Biosci Bioeng. 2009;108:111–5.PubMedCrossRef Inoue K, Gotou T, Kitajima H, Mizuno S, Nakazawa T, Yamamoto N. Release of antihypertensive peptides in miso paste during its fermentation, by the addition of casein. J Biosci Bioeng. 2009;108:111–5.PubMedCrossRef
55.
go back to reference De Leo F, Panarese S, Gallerani R, Ceci LR. Angiotensin converting enzyme (ACE) inhibitory peptides: production and implementation of functional food. Curr Pharm Des. 2009;15:3622–43.PubMedCrossRef De Leo F, Panarese S, Gallerani R, Ceci LR. Angiotensin converting enzyme (ACE) inhibitory peptides: production and implementation of functional food. Curr Pharm Des. 2009;15:3622–43.PubMedCrossRef
56.
go back to reference Du DD, Yoshinaga M, Sonoda M, Kawakubo K, Uehara Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clin Exp Hypertens. 2014;36:359–66.PubMedCrossRef Du DD, Yoshinaga M, Sonoda M, Kawakubo K, Uehara Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clin Exp Hypertens. 2014;36:359–66.PubMedCrossRef
57.
go back to reference Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119:978–86.PubMedCrossRef Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119:978–86.PubMedCrossRef
58.
go back to reference Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, Shimizu H, Fujita T. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59:105–12.PubMedCrossRef Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, Shimizu H, Fujita T. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59:105–12.PubMedCrossRef
59.
go back to reference Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.PubMedCrossRef Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.PubMedCrossRef
60.
go back to reference Chan SH, Chan JY. Angiotensin -generated reactive oxygen species in brain and pathogenesis of cardiovascular disease. Antioxid Redox Signal. 2013;19:1074–84.PubMedCrossRef Chan SH, Chan JY. Angiotensin -generated reactive oxygen species in brain and pathogenesis of cardiovascular disease. Antioxid Redox Signal. 2013;19:1074–84.PubMedCrossRef
61.
go back to reference Han YJ, Hu WY, Piano M, de Lanerolle P. Regulation of myosin light chain kinase expression by angiotensin II in hypertension. Am J Hypertens. 2008;21:860–5.PubMedCrossRef Han YJ, Hu WY, Piano M, de Lanerolle P. Regulation of myosin light chain kinase expression by angiotensin II in hypertension. Am J Hypertens. 2008;21:860–5.PubMedCrossRef
62.
go back to reference Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431.PubMedCrossRef Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431.PubMedCrossRef
63.
64.
go back to reference Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev. 2015;11:132–42.PubMedCrossRef Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev. 2015;11:132–42.PubMedCrossRef
65.
go back to reference van Haaster MC, McDonough AA, Gurley SB. Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens. 2018;27:1–7.PubMedPubMedCentralCrossRef van Haaster MC, McDonough AA, Gurley SB. Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens. 2018;27:1–7.PubMedPubMedCentralCrossRef
Metadata
Title
Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate
Author
Koji Ito
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Environmental Health and Preventive Medicine / Issue 1/2020
Print ISSN: 1342-078X
Electronic ISSN: 1347-4715
DOI
https://doi.org/10.1186/s12199-020-00883-4

Other articles of this Issue 1/2020

Environmental Health and Preventive Medicine 1/2020 Go to the issue