Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Hyperparathyroidism | Research

Gene expression and methylation profiles show the involvement of POMC in primary hyperparathyroidsm

Authors: Wen-Xuan Zhou, Shu Wang, Ting-Chao Wu, Ling-Chao Cheng, Yao Du, Wei Wu, Chen Lin, Xin-Ying Li, Zhong-Liang Hu

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Primary hyperparathyroidism (PHPT) is mainly caused by parathyroid adenoma, which produces excess parathyroid hormones. Its pathogenic mechanisms have not yet been fully understood. To investigate the mechanism in the pathogenesis of PHPT, the transcriptome and genome-wide DNA methylation profiles of parathyroid adenoma were analyzed. The candidate genes that may be involved in the PHPT were verified via qRT-PCR, immunohistochemistry, western blot, and methylation-specific PCR. A total of 1650 differentially expressed genes and 2373 differentially methylated regions were identified. After the integration of its transcriptome and DNA methylation data, IL6, SYP, GNA01, and pro-opiomelanocortin (POMC) were the candidate genes that demonstrated a similar pattern between their mRNA expression and DNA methylation status. Of the 4 candidate genes, POMC, a pro-peptide which is processed to a range of bioactive peptide products like ACTH, was further confirmed to be expressed at low levels at both the mRNA and protein levels, which may be due to POMC promoter hypermethylation. Hypermethylation of the POMC promoter may contribute to its low expression, which may be involved in the pathogenesis of PHPT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bilezikian JP, Bandeira L, Khan A, et al. Hyperparathyroidism. Lancet. 2017;69(10116):1558. Bilezikian JP, Bandeira L, Khan A, et al. Hyperparathyroidism. Lancet. 2017;69(10116):1558.
2.
go back to reference Walker MD, Silverberg SJ. Primary hyperparathyroidism. Nat Rev Endocrinol. 2018;14(2):115–25.CrossRef Walker MD, Silverberg SJ. Primary hyperparathyroidism. Nat Rev Endocrinol. 2018;14(2):115–25.CrossRef
3.
go back to reference Silverberg SJ, Shane E, Jacobs TP, et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med. 1999;342(2):144 (Erratum appears in N Engl J Med 2000 Jan 13). Silverberg SJ, Shane E, Jacobs TP, et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med. 1999;342(2):144 (Erratum appears in N Engl J Med 2000 Jan 13).
4.
go back to reference Pokhrel B, Levine SN. Primary hyperparathyroidism. Florida: StatPearls [Internet]; 2021. Pokhrel B, Levine SN. Primary hyperparathyroidism. Florida: StatPearls [Internet]; 2021.
5.
go back to reference Wilhelm SM, Wang TS, Ruan DT, et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism. JAMA Surg. 2016;151(10):959–68.CrossRef Wilhelm SM, Wang TS, Ruan DT, et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism. JAMA Surg. 2016;151(10):959–68.CrossRef
6.
go back to reference Kowalski GJ, Buła G, Żądło D, Gawrychowska A, Gawrychowski J. Primary hyperparathyroidism. Endokrynol Pol. 2020;71(3):260–70.CrossRef Kowalski GJ, Buła G, Żądło D, Gawrychowska A, Gawrychowski J. Primary hyperparathyroidism. Endokrynol Pol. 2020;71(3):260–70.CrossRef
7.
go back to reference Arnold A. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med. 1988;318:658.CrossRef Arnold A. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med. 1988;318:658.CrossRef
8.
go back to reference Naveh-Many T. Molecular biology of the parathyroid. Boston: Springer; 2005.CrossRef Naveh-Many T. Molecular biology of the parathyroid. Boston: Springer; 2005.CrossRef
9.
go back to reference Bilezikian JP, Cusano NE, Khan AA, et al. Primary hyperparathyroidism. Nat Rev Dis Primers. 2016;2(1):16033.CrossRef Bilezikian JP, Cusano NE, Khan AA, et al. Primary hyperparathyroidism. Nat Rev Dis Primers. 2016;2(1):16033.CrossRef
10.
go back to reference Tavares C, Melo M, Teijeiro J, et al. Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2015;174(4):R117.CrossRef Tavares C, Melo M, Teijeiro J, et al. Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2015;174(4):R117.CrossRef
11.
go back to reference Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340(2):284–95.CrossRef Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340(2):284–95.CrossRef
12.
go back to reference Carbon S, Ireland A, Mungall CJ, et al. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9.CrossRef Carbon S, Ireland A, Mungall CJ, et al. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9.CrossRef
13.
go back to reference Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36(Suppl_1):D480–4.CrossRef Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36(Suppl_1):D480–4.CrossRef
14.
go back to reference Abdi H. The Bonferonni and Šidák corrections for multiple comparisons. Encycl Meas Stat. 2007;1:1–9. Abdi H. The Bonferonni and Šidák corrections for multiple comparisons. Encycl Meas Stat. 2007;1:1–9.
15.
go back to reference Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):1–7. Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):1–7.
16.
go back to reference Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):1–27.CrossRef Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):1–27.CrossRef
17.
go back to reference Tong K, Zhu W, Fu H, Cao F, Wang S, Zhou W, Liu C, Chen D, Fan S, Hu Z. Frequent KRAS mutations in oncocytic papillary renal neoplasm with inverted nuclei. Histopathology. 2020;76(7):1070–83.CrossRef Tong K, Zhu W, Fu H, Cao F, Wang S, Zhou W, Liu C, Chen D, Fan S, Hu Z. Frequent KRAS mutations in oncocytic papillary renal neoplasm with inverted nuclei. Histopathology. 2020;76(7):1070–83.CrossRef
18.
go back to reference Luo X, He Y, Tang H, Cao Y, Gao M, Liu B, Hu Z. Effects of HER2 on the invasion and migration of gastric cancer. Am J Transl Res. 2019;11(12):7604–13.PubMedPubMedCentral Luo X, He Y, Tang H, Cao Y, Gao M, Liu B, Hu Z. Effects of HER2 on the invasion and migration of gastric cancer. Am J Transl Res. 2019;11(12):7604–13.PubMedPubMedCentral
19.
go back to reference Pyrah LN, Hodgkinson A, Anderson CK. Primary hyperparathyroidism. Br J Surg. 2010;53:245–316.CrossRef Pyrah LN, Hodgkinson A, Anderson CK. Primary hyperparathyroidism. Br J Surg. 2010;53:245–316.CrossRef
20.
go back to reference Kberle R, Bendik CF. Primary hyperparathyroidism. Ther Umsch. 2020;77(9):433–40.CrossRef Kberle R, Bendik CF. Primary hyperparathyroidism. Ther Umsch. 2020;77(9):433–40.CrossRef
21.
go back to reference Imanishi Y. Molecular pathogenesis of tumorigenesis in sporadic parathyroid adenomas. J Bone Miner Metab. 2002;20(4):190–5.CrossRef Imanishi Y. Molecular pathogenesis of tumorigenesis in sporadic parathyroid adenomas. J Bone Miner Metab. 2002;20(4):190–5.CrossRef
22.
go back to reference Árvai K, Nagy K, Barti-Juhász H, et al. Molecular profiling of parathyroid hyperplasia, adenoma and carcinoma. Pathol Oncol Res. 2012;18(3):607–14.CrossRef Árvai K, Nagy K, Barti-Juhász H, et al. Molecular profiling of parathyroid hyperplasia, adenoma and carcinoma. Pathol Oncol Res. 2012;18(3):607–14.CrossRef
23.
go back to reference Drouin J. 60 years of POMC: transcriptional and epigenetic regulation of POMC gene expression. J Mol Endocrinol. 2016;56:99–112.CrossRef Drouin J. 60 years of POMC: transcriptional and epigenetic regulation of POMC gene expression. J Mol Endocrinol. 2016;56:99–112.CrossRef
24.
go back to reference Muschler M, Hillemacher T, Kraus C, et al. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J Neural Transm. 2010;117(4):513–9.CrossRef Muschler M, Hillemacher T, Kraus C, et al. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J Neural Transm. 2010;117(4):513–9.CrossRef
25.
go back to reference Rajput R, Bhansali A, Bhadada SK, et al. A pilot study on hypothalamo-pituitary-adrenocortical axis in primary hyperparathyroidism. Indian J Med Res. 2009;130(4):418.PubMed Rajput R, Bhansali A, Bhadada SK, et al. A pilot study on hypothalamo-pituitary-adrenocortical axis in primary hyperparathyroidism. Indian J Med Res. 2009;130(4):418.PubMed
26.
go back to reference Williams GA, Peterson WC, Nelson BE, et al. Interrelationship of parathyroid and adrenocortical function in calcium homeostasis in the rat. Endocrinology. 1974;3:707.CrossRef Williams GA, Peterson WC, Nelson BE, et al. Interrelationship of parathyroid and adrenocortical function in calcium homeostasis in the rat. Endocrinology. 1974;3:707.CrossRef
27.
go back to reference Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.CrossRef Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.CrossRef
28.
go back to reference Newell-Price J, King P, Clark A. The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol. 2001;15(2):338–48.CrossRef Newell-Price J, King P, Clark A. The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol. 2001;15(2):338–48.CrossRef
29.
go back to reference Newell-Price J. Proopiomelanocortin gene expression and DNA methylation: implications for Cushing’s syndrome and beyond. J Endocrinol. 2003;177(3):365.CrossRef Newell-Price J. Proopiomelanocortin gene expression and DNA methylation: implications for Cushing’s syndrome and beyond. J Endocrinol. 2003;177(3):365.CrossRef
30.
go back to reference Ye L, Li X, et al. Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol. 2005;185(2):337–43.CrossRef Ye L, Li X, et al. Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol. 2005;185(2):337–43.CrossRef
Metadata
Title
Gene expression and methylation profiles show the involvement of POMC in primary hyperparathyroidsm
Authors
Wen-Xuan Zhou
Shu Wang
Ting-Chao Wu
Ling-Chao Cheng
Yao Du
Wei Wu
Chen Lin
Xin-Ying Li
Zhong-Liang Hu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03568-4

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine