Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2023

Open Access 01-12-2023 | Hyperglycemia | Research

Expression of proinflammatory cytokines and proinsulin by bone marrow-derived cells for fracture healing in long-term diabetic mice

Authors: Hitomi Fujikawa, Hideto Kojima, Tomoya Terashima, Miwako Katagi, Takafumi Yayama, Kosuke Kumagai, Kanji Mori, Hideki Saito, Shinji Imai

Published in: BMC Musculoskeletal Disorders | Issue 1/2023

Login to get access

Abstract

Background

Diabetes mellitus (DM) causes bone dysfunction due to poor bone quality, leading to severe deterioration in patient of quality of life. The mechanisms of bone metabolism in DM remain unclear, although chemical and/or mechanical factors are known to disrupt the homeostasis of osteoblasts and osteoclasts. The purpose of this study was to identify the changes of osteoblasts and osteoclasts under long-term hyperglycaemic conditions, using a mouse fracture model of long-term hyperglycemia (LT-HG).

Methods

C57BL/6J mice and green fluorescent protein (GFP) -positive bone marrow transplanted C57BL/6J mice with LT-HG, maintained under a state of hyperglycaemia for 2 months, were used in this study. After the experimental fracture, we examined the immunohistochemical expression of proinsulin and tumor necrosis factor (TNF) -α at the fracture site. C57BL/6J fracture model mice without hyperglycaemia were used as controls.

Results

In the LT-HG mice, chondrocyte resorption was delayed, and osteoblasts showed an irregular arrangement at the callus site. The osteoclasts were scattered with a decrement in the number of nuclei. The expression of proinsulin was confirmed in bone marrow derived cells (BMDCs) with neovascularization 2 and 3 weeks after fracture. Immunopositivity for TNF-α was also confirmed in immature chondrocytes and BMDCs with neovascularization at 2 weeks, and the number of positive cells was not decreased at 3 weeks. Examination of GFP-grafted hyperglycaemic mice showed that the majority of cells at the fracture site were GFP-positive. Immunohistochemistry showed that the rate of double positives was 15% for GFP and proinsulin and 47% for GFP and TNF-α.

Conclusion

LT-HG induces an increase in the number of proinsulin and TNF-α positive cells derived from BMDCs. We suggest that proinsulin and TNF-α positive cells are involved in both bone formation and bone resorption after fracture under hyperglycaemic conditions, resulting in the delay of bone healing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018 Apr;138:271–81. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018 Apr;138:271–81.
2.
go back to reference Zhou B, Lu Y, Hajifathalian K, Bentham J, Cesare MDi, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet. 2016 Apr;387(10027):1513–30. Zhou B, Lu Y, Hajifathalian K, Bentham J, Cesare MDi, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet. 2016 Apr;387(10027):1513–30.
3.
go back to reference Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D et al. Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabetes Res 2020 May;7608964:1–18. Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D et al. Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabetes Res 2020 May;7608964:1–18.
4.
go back to reference Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007 Apr;18(4):427–44. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007 Apr;18(4):427–44.
5.
go back to reference Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988 Jul;232:210–6. Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988 Jul;232:210–6.
6.
go back to reference Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop. 2012 Dec;83(6):653–60. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop. 2012 Dec;83(6):653–60.
7.
go back to reference Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology. 2005 Aug;146(8):3622–31. Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology. 2005 Aug;146(8):3622–31.
8.
go back to reference Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007 Jan;148(1):198–205. Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007 Jan;148(1):198–205.
9.
go back to reference Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M, et al. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem. 2020 Jun;167(6):613–21. Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M, et al. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem. 2020 Jun;167(6):613–21.
10.
go back to reference Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y, et al. High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J. 2013 Jun;12:584–97. Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y, et al. High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J. 2013 Jun;12:584–97.
11.
go back to reference Kojima H, Fujimiya M, Terashima T, Kimura H, Chan L. Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: is history repeating itself? Endocr J. 2006 Dec;53(6):715–22. Kojima H, Fujimiya M, Terashima T, Kimura H, Chan L. Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: is history repeating itself? Endocr J. 2006 Dec;53(6):715–22.
12.
go back to reference Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M, et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci USA. 2005 Aug;102(35):12525–30. Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M, et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci USA. 2005 Aug;102(35):12525–30.
13.
go back to reference Kasahara T, Imai S, Kojima H, Katagi M, Kimura H, Chan L, et al. Malfunction of bone marrow-derived osteoclasts and the delay of bone fracture healing in diabetic mice. Bone. 2010 Sep;47(3):617–25. Kasahara T, Imai S, Kojima H, Katagi M, Kimura H, Chan L, et al. Malfunction of bone marrow-derived osteoclasts and the delay of bone fracture healing in diabetic mice. Bone. 2010 Sep;47(3):617–25.
14.
go back to reference Kawamoto T. Kawamoto’s film method 2008. Med Technol. 2009;72:76–83. (in Japanese). Kawamoto T. Kawamoto’s film method 2008. Med Technol. 2009;72:76–83. (in Japanese).
15.
go back to reference Hankamolsiri W, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Tapanadechopone P, Kheolamai P. The effects of high glucose on adipogenic and osteogenic differentiation of gestational tissue-derived MSCs. Stem Cells Int. 2016 Dec;9674614:1–15. Hankamolsiri W, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Tapanadechopone P, Kheolamai P. The effects of high glucose on adipogenic and osteogenic differentiation of gestational tissue-derived MSCs. Stem Cells Int. 2016 Dec;9674614:1–15.
16.
go back to reference Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem. 2020 Jun;167(6):613–21. Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem. 2020 Jun;167(6):613–21.
17.
go back to reference Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007 Apr;22(4):560–8. Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007 Apr;22(4):560–8.
18.
go back to reference Reyes-Garcia R, Rozas-Moreno P, López-Gallardo G, Garcia-Martin A, Varsavsky M, Avilés-Pérez MD, et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2013 Feb;50(1):47–52. Reyes-Garcia R, Rozas-Moreno P, López-Gallardo G, Garcia-Martin A, Varsavsky M, Avilés-Pérez MD, et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2013 Feb;50(1):47–52.
19.
go back to reference Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997 Mar;15(3):289–92. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997 Mar;15(3):289–92.
20.
go back to reference Kojima H, Mineko F, Kazuhiro M, Tamio N, Manami H, Chan L. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA. 2004 Feb;101(8):2458–63. Kojima H, Mineko F, Kazuhiro M, Tamio N, Manami H, Chan L. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA. 2004 Feb;101(8):2458–63.
21.
go back to reference Urabe H, Terashima T, Lin F, Kojima H, Chan L. Bone marrow-derived TNF-α causes diabetic neuropathy in mice. Diabetologia. 2015 Feb;58(2):402–10. Urabe H, Terashima T, Lin F, Kojima H, Chan L. Bone marrow-derived TNF-α causes diabetic neuropathy in mice. Diabetologia. 2015 Feb;58(2):402–10.
22.
go back to reference Nobuta H, Katagi M, Kume S, Terashima T, Araki SI, Maegawa H, et al. A role for bone marrow-derived cells in diabetic nephropathy. FASEB J. 2019 Mar;33(3):4067–76. Nobuta H, Katagi M, Kume S, Terashima T, Araki SI, Maegawa H, et al. A role for bone marrow-derived cells in diabetic nephropathy. FASEB J. 2019 Mar;33(3):4067–76.
23.
go back to reference Fujimiya M, Kojima H, Ichinose M, Arai R, Kimura H, Kashiwagi A, et al. Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes. Proc Natl Acad Sci USA. 2007 Mar;104(10):4030–5. Fujimiya M, Kojima H, Ichinose M, Arai R, Kimura H, Kashiwagi A, et al. Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes. Proc Natl Acad Sci USA. 2007 Mar;104(10):4030–5.
24.
go back to reference Ko KI, Coimbra LS, Tian C, Alblowi J, Kayal RA, Einhorn TA, et al. Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism. Diabetologia. 2015 Mar;58(3):633–42. Ko KI, Coimbra LS, Tian C, Alblowi J, Kayal RA, Einhorn TA, et al. Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism. Diabetologia. 2015 Mar;58(3):633–42.
25.
go back to reference Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B, et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017 Jan;9(372):eaag2809. Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B, et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017 Jan;9(372):eaag2809.
26.
go back to reference Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Comput Methods Programs Biomed. 2022 Jan;213;106536. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Comput Methods Programs Biomed. 2022 Jan;213;106536.
27.
go back to reference Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010 Aug;466(7308):829–34. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010 Aug;466(7308):829–34.
28.
go back to reference Greenbaum A, Hsu YMS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013 Mar;495(7440):227–30. Greenbaum A, Hsu YMS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013 Mar;495(7440):227–30.
29.
go back to reference Song J, Mizuno J, Hashizume Y, Nakagawa H. Immunohistochemistry of symptomatic hypertrophy of the posterior longitudinal ligament with special reference to ligamentous ossification. Spinal Cord. 2006 Sep;44:576–81. Song J, Mizuno J, Hashizume Y, Nakagawa H. Immunohistochemistry of symptomatic hypertrophy of the posterior longitudinal ligament with special reference to ligamentous ossification. Spinal Cord. 2006 Sep;44:576–81.
30.
go back to reference Yayama T, Mori K, Saito H, Fujikawa H, Kitagawa M, Okumura N, et al. Cytokine Profile from the Ligamentum Flavum in patients with ossification of the posterior longitudinal ligament in the cervical spine. Spine. 2022 Feb;47(3):277–85. Yayama T, Mori K, Saito H, Fujikawa H, Kitagawa M, Okumura N, et al. Cytokine Profile from the Ligamentum Flavum in patients with ossification of the posterior longitudinal ligament in the cervical spine. Spine. 2022 Feb;47(3):277–85.
Metadata
Title
Expression of proinflammatory cytokines and proinsulin by bone marrow-derived cells for fracture healing in long-term diabetic mice
Authors
Hitomi Fujikawa
Hideto Kojima
Tomoya Terashima
Miwako Katagi
Takafumi Yayama
Kosuke Kumagai
Kanji Mori
Hideki Saito
Shinji Imai
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2023
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-023-06710-5

Other articles of this Issue 1/2023

BMC Musculoskeletal Disorders 1/2023 Go to the issue