Skip to main content
Top
Published in: Journal of Neural Transmission 11/2016

01-11-2016 | High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article

Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO)

Author: Hideo Kimura

Published in: Journal of Neural Transmission | Issue 11/2016

Login to get access

Abstract

Hydrogen sulfide (H2S) is a physiological mediator with various roles, including neuro-modulation, vascular tone regulation, and cytoprotection against ischemia–reperfusion injury, angiogenesis, and oxygen sensing. Hydrogen polysulfide (H2S n ), which possesses a higher number of sulfur atoms than H2S, recently emerged as a potential signaling molecule that regulates the activity of ion channels, a tumor suppressor, transcription factors, and protein kinases. Some of the previously reported effects of H2S are now attributed to the more potent H2S n . H2S n is produced by 3-mercaptopyruvate sulfurtransferase (3MST) from 3-mercaptopyruvate (3MP) and is generated by the chemical interaction of H2S with nitric oxide (NO). H2S n sulfhydrates (sulfurates) cysteine residues of target proteins and modifies their activity, whereas H2S sulfurates oxidized cysteine residues as well as reduces cysteine disulfide bonds. This review focuses on the recent progress made in studies concerning the production and physiological roles of H2S n and H2S.
Literature
go back to reference Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071PubMed Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071PubMed
go back to reference Aizenman E, Lipton DA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263PubMedCrossRef Aizenman E, Lipton DA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263PubMedCrossRef
go back to reference Braunstein AE, Goryachenkowa EV, Tolosa EA, Willhardt IH, Yefremova LL (1971) Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine β-synthase. Biochim Biophys Acta 242:247–260PubMedCrossRef Braunstein AE, Goryachenkowa EV, Tolosa EA, Willhardt IH, Yefremova LL (1971) Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine β-synthase. Biochim Biophys Acta 242:247–260PubMedCrossRef
go back to reference Cacanviova, Kristek F, Misak A, Ondrias K (2012) Product(s) of H2S–NO interaction and relaxation of aortic rings. The first European conference on the biology of H2S, p 100 Cacanviova, Kristek F, Misak A, Ondrias K (2012) Product(s) of H2S–NO interaction and relaxation of aortic rings. The first European conference on the biology of H2S, p 100
go back to reference Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40PubMedCrossRef Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40PubMedCrossRef
go back to reference Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374PubMedPubMedCentralCrossRef Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374PubMedPubMedCentralCrossRef
go back to reference Cavallini D, Marco CD, Mondavi B, Mori BG (1960) The cleavage of cystine by cystathionase and the transulfuration of hypotaurine. Enzymologia 22:161–173PubMed Cavallini D, Marco CD, Mondavi B, Mori BG (1960) The cleavage of cystine by cystathionase and the transulfuration of hypotaurine. Enzymologia 22:161–173PubMed
go back to reference Cavallini D, Mondovi B, De Marco C, Scioscia-Santoro A (1962) The mechanism of desulphhydration of cysteine. Enzymologia 24:253–266PubMed Cavallini D, Mondovi B, De Marco C, Scioscia-Santoro A (1962) The mechanism of desulphhydration of cysteine. Enzymologia 24:253–266PubMed
go back to reference Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocystein. J Biol Chem 279:52082–52086PubMedCrossRef Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocystein. J Biol Chem 279:52082–52086PubMedCrossRef
go back to reference Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612PubMedPubMedCentralCrossRef Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612PubMedPubMedCentralCrossRef
go back to reference Cortese-Krott MM, Kuhnle GGC, Dyson A, Fernandez BO, Grman M, DuMond JF, Barrow MP, McLeod G, Nakagawa H, Ondrias K, Nagy P, King SB, Saavedra JE, Keefer LK, Singer M, Kelm M, Butler AR, Feelisch M (2015) Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci USA 112:E4651–E4660PubMedPubMedCentralCrossRef Cortese-Krott MM, Kuhnle GGC, Dyson A, Fernandez BO, Grman M, DuMond JF, Barrow MP, McLeod G, Nakagawa H, Ondrias K, Nagy P, King SB, Saavedra JE, Keefer LK, Singer M, Kelm M, Butler AR, Feelisch M (2015) Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci USA 112:E4651–E4660PubMedPubMedCentralCrossRef
go back to reference Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, Roche J, Fischer M, Suarez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Marti MA, Doctorovich F, Hogestatt ED, Ygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signaling pathway. Nat Commun 5:4381PubMedPubMedCentralCrossRef Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, Roche J, Fischer M, Suarez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Marti MA, Doctorovich F, Hogestatt ED, Ygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signaling pathway. Nat Commun 5:4381PubMedPubMedCentralCrossRef
go back to reference Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565PubMedPubMedCentralCrossRef Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565PubMedPubMedCentralCrossRef
go back to reference Francoleon NE, Carrington SJ, Fukuto JM (2011) The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch Biochem Biophys 516:146–153PubMedCrossRef Francoleon NE, Carrington SJ, Fukuto JM (2011) The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch Biochem Biophys 516:146–153PubMedCrossRef
go back to reference Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765PubMedPubMedCentralCrossRef Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765PubMedPubMedCentralCrossRef
go back to reference Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T (2015) Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 11:24PubMedPubMedCentralCrossRef Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T (2015) Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 11:24PubMedPubMedCentralCrossRef
go back to reference Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361PubMedCrossRef Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361PubMedCrossRef
go back to reference Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531PubMedCrossRef Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531PubMedCrossRef
go back to reference Hylin JW, Wood JL (1959) Enzymatic formation of polysulfides from mercaptopyruvate. J Biol Chem 234:2141–2144PubMed Hylin JW, Wood JL (1959) Enzymatic formation of polysulfides from mercaptopyruvate. J Biol Chem 234:2141–2144PubMed
go back to reference Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Davarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611PubMedPubMedCentralCrossRef Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Davarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611PubMedPubMedCentralCrossRef
go back to reference Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214PubMedCrossRef Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214PubMedCrossRef
go back to reference Jarosz AP, Wei W, Gauld JW, Auld J, Ozcan F, Aslan M, Mutus B (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521PubMedCrossRef Jarosz AP, Wei W, Gauld JW, Auld J, Ozcan F, Aslan M, Mutus B (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521PubMedCrossRef
go back to reference Jennings ML (2013) Transport of H2S and HS− across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl−/HS− exchange. Am J Physiol Cell Physiol 305:C941–C950PubMedPubMedCentralCrossRef Jennings ML (2013) Transport of H2S and HS across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl/HS exchange. Am J Physiol Cell Physiol 305:C941–C950PubMedPubMedCentralCrossRef
go back to reference Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167PubMed Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167PubMed
go back to reference Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J-I, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457PubMedCrossRef Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J-I, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457PubMedCrossRef
go back to reference Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774PubMedPubMedCentralCrossRef Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774PubMedPubMedCentralCrossRef
go back to reference King AL, Polhemus D, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao Y-X, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187PubMedPubMedCentralCrossRef King AL, Polhemus D, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao Y-X, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187PubMedPubMedCentralCrossRef
go back to reference Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K (2013) Polysulfide exerts a protective effect against cytotoxicity cuased by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 587:3548–3555PubMedCrossRef Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K (2013) Polysulfide exerts a protective effect against cytotoxicity cuased by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 587:3548–3555PubMedCrossRef
go back to reference Kuo SM, Lea TC, Stipanuk MH (1983) developmental pattern, tissue distribution, and subcellular distribution of cysteine:alpha-ketoglutarate aminotransferase and 3-mercaptopyruvate sulfurtransferase activities in the rat. Biol Neonate 43:23–32PubMedCrossRef Kuo SM, Lea TC, Stipanuk MH (1983) developmental pattern, tissue distribution, and subcellular distribution of cysteine:alpha-ketoglutarate aminotransferase and 3-mercaptopyruvate sulfurtransferase activities in the rat. Biol Neonate 43:23–32PubMedCrossRef
go back to reference Massey V, Williams CH, Palmer G (1971) The presence of S0-containing impurities in commercial samples of oxidized glutathione and their catalytic effect in the reduction of cytochrome c. Biochem Biophys Res Commun 42:730–738PubMedCrossRef Massey V, Williams CH, Palmer G (1971) The presence of S0-containing impurities in commercial samples of oxidized glutathione and their catalytic effect in the reduction of cytochrome c. Biochem Biophys Res Commun 42:730–738PubMedCrossRef
go back to reference Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638PubMedPubMedCentralCrossRef Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638PubMedPubMedCentralCrossRef
go back to reference Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J Biol Chem 206:561–575PubMed Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J Biol Chem 206:561–575PubMed
go back to reference Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485PubMedCrossRef Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485PubMedCrossRef
go back to reference Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386PubMedPubMedCentralCrossRef Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386PubMedPubMedCentralCrossRef
go back to reference Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca2+ concentrations. Biochem Biophys Res Commun 431:131–135PubMedCrossRef Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca2+ concentrations. Biochem Biophys Res Commun 431:131–135PubMedCrossRef
go back to reference Miljkovic JL, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR (2013) Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Ed 52:12061–12064CrossRef Miljkovic JL, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR (2013) Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Ed 52:12061–12064CrossRef
go back to reference Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896PubMedPubMedCentralCrossRef Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896PubMedPubMedCentralCrossRef
go back to reference Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464PubMedPubMedCentralCrossRef Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464PubMedPubMedCentralCrossRef
go back to reference Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, Takahashi T, Ishii I, Matsubara K, Kabe Y, Uchiyama S, Nagata E, Gadalla MM, Snyder SH, Suematsu M (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109:1293–1298PubMedPubMedCentralCrossRef Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, Takahashi T, Ishii I, Matsubara K, Kabe Y, Uchiyama S, Nagata E, Gadalla MM, Snyder SH, Suematsu M (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109:1293–1298PubMedPubMedCentralCrossRef
go back to reference Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72PubMedPubMedCentral Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72PubMedPubMedCentral
go back to reference Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268PubMedPubMedCentralCrossRef Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268PubMedPubMedCentralCrossRef
go back to reference Nagahara N, Okazaki Tl, Nishino T (1995) Cytosolic mercaptupyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity or rhodanese by site-directed mutagenesis. J Biol Chem 270:16230–16235PubMedCrossRef Nagahara N, Okazaki Tl, Nishino T (1995) Cytosolic mercaptupyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity or rhodanese by site-directed mutagenesis. J Biol Chem 270:16230–16235PubMedCrossRef
go back to reference Nagahara N, Yoshii T, Abe Y, Matsumura T (2007) Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J Biol Chem 282:1561–1569PubMedCrossRef Nagahara N, Yoshii T, Abe Y, Matsumura T (2007) Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J Biol Chem 282:1561–1569PubMedCrossRef
go back to reference Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559PubMed Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559PubMed
go back to reference Nagai Y, Tsugane M, Oka J-I, Kimura H (2006) Polysulfides induce calcium waves in rat hippocampal astrocytes. J Pharmacol Sci 100:200 Nagai Y, Tsugane M, Oka J-I, Kimura H (2006) Polysulfides induce calcium waves in rat hippocampal astrocytes. J Pharmacol Sci 100:200
go back to reference Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543PubMedCrossRef Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543PubMedCrossRef
go back to reference Nielsen RW, Tchibana C, Hansen NE, Winther JR (2011) Trisulfides in proteins. Antioxid Redox Signal 15:67–75PubMedCrossRef Nielsen RW, Tchibana C, Hansen NE, Winther JR (2011) Trisulfides in proteins. Antioxid Redox Signal 15:67–75PubMedCrossRef
go back to reference Niu WN, Yadav PK, Adamec J, Banerjee R (2015) S-Glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22:350–361PubMedPubMedCentralCrossRef Niu WN, Yadav PK, Adamec J, Banerjee R (2015) S-Glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22:350–361PubMedPubMedCentralCrossRef
go back to reference Ogasawara Y, Ishii K, Togawa T, Tanabe S (1993) Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Anal Biochem 215:73–81PubMedCrossRef Ogasawara Y, Ishii K, Togawa T, Tanabe S (1993) Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Anal Biochem 215:73–81PubMedCrossRef
go back to reference Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023PubMedCrossRef Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023PubMedCrossRef
go back to reference Oosumi K, Tsugane M, Ishigami M, Nagai Y, Iwai T, Oka J-I, Kimura H (2010) Polysulfide activates TRP channels and increases intracellular Ca2+ in astrocytes. Neurosci Res 685:e109–e222CrossRef Oosumi K, Tsugane M, Ishigami M, Nagai Y, Iwai T, Oka J-I, Kimura H (2010) Polysulfide activates TRP channels and increases intracellular Ca2+ in astrocytes. Neurosci Res 685:e109–e222CrossRef
go back to reference Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977PubMedPubMedCentralCrossRef Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977PubMedPubMedCentralCrossRef
go back to reference Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724PubMedPubMedCentralCrossRef Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724PubMedPubMedCentralCrossRef
go back to reference Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24PubMedPubMedCentralCrossRef Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24PubMedPubMedCentralCrossRef
go back to reference Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a) Vascular endothelium exresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626PubMedCrossRef Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a) Vascular endothelium exresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626PubMedCrossRef
go back to reference Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009b) 3-Mercaptopyruvate sulfurtransferease produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714PubMedCrossRef Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009b) 3-Mercaptopyruvate sulfurtransferease produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714PubMedCrossRef
go back to reference Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat Commun 4:1366PubMedCrossRef Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat Commun 4:1366PubMedCrossRef
go back to reference Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466PubMedPubMedCentralCrossRef Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466PubMedPubMedCentralCrossRef
go back to reference Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Ann Rev Nutr 6:179–209CrossRef Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Ann Rev Nutr 6:179–209CrossRef
go back to reference Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277PubMedPubMedCentralCrossRef Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277PubMedPubMedCentralCrossRef
go back to reference Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014) Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64:1344–1351PubMedCrossRef Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014) Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64:1344–1351PubMedCrossRef
go back to reference Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251PubMedCrossRef Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251PubMedCrossRef
go back to reference Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145PubMedPubMedCentralCrossRef Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145PubMedPubMedCentralCrossRef
go back to reference Tripatara P, Patel NSA, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PAJ, Yaqoob MM, Fantozzi R, Thiemermann C (2008) Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88:1038–1048PubMedCrossRef Tripatara P, Patel NSA, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PAJ, Yaqoob MM, Fantozzi R, Thiemermann C (2008) Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88:1038–1048PubMedCrossRef
go back to reference Vasas A, Doka E, Fabian I, Nagy P (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101PubMedCrossRef Vasas A, Doka E, Fabian I, Nagy P (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101PubMedCrossRef
go back to reference Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310PubMedCrossRef Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310PubMedCrossRef
go back to reference Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013PubMedPubMedCentralCrossRef Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013PubMedPubMedCentralCrossRef
go back to reference Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138:289–299PubMedCrossRef Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138:289–299PubMedCrossRef
go back to reference Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919PubMedCrossRef Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919PubMedCrossRef
go back to reference Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulphide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120PubMedCrossRef Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulphide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120PubMedCrossRef
Metadata
Title
Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO)
Author
Hideo Kimura
Publication date
01-11-2016
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 11/2016
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1600-z

Other articles of this Issue 11/2016

Journal of Neural Transmission 11/2016 Go to the issue

Neurology and Preclinical Neurological Studies - Original Article

Predictors of postprandial hypotension in elderly patients with de novo Parkinson’s disease

High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article

Therapies for Parkinson’s diseases: alternatives to current pharmacological interventions

Neurology and Preclinical Neurological Studies - Short communication

C9ORF72 repeat expansions in Chinese patients with Parkinson’s disease and multiple system atrophy