Skip to main content
Top
Published in: BMC Urology 1/2019

Open Access 01-12-2019 | Human Papillomavirus | Research article

Langerhans cells in hypospadias: an analysis of Langerin (CD207) and HLA-DR on epidermal sheets and full thickness skin sections

Authors: Bernhard Haid, Daniela Reider, Felix Nägele, Anne-Françoise Spinoit, Elisabeth Pechriggl, Nikolaus Romani, Helga Fritsch, Josef Oswald

Published in: BMC Urology | Issue 1/2019

Login to get access

Abstract

Background

Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients.

Methods

A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests.

Results

There was no difference in frequency of epidermal LCs, Neither on sheets (873 ± 61 vs. 940 ± 84LCs/mm2, p = 0.522) nor on sections (32 ± 3 vs. 30 ± 2LCs/mm2, p = 0.697). Likewise, the frequency of dermal LCs (5,9 ± 0,9 vs. 7.5 ± 1.3LCs/mm2, p = 0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p = 0.949), younger and older boys (p = 0.818) or considering topical dihydrotestosterone treatment prior to surgery (p = 0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations.

Conclusions

LCs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity.
Literature
1.
go back to reference Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The genetic and environmental factors underlying hypospadias. Sex Dev. 2015;9:239–59.CrossRef Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The genetic and environmental factors underlying hypospadias. Sex Dev. 2015;9:239–59.CrossRef
2.
go back to reference Kurzrock EA, Baskin LS, Li Y, Cunha GR. Epithelial-mesenchymal interactions in development of the mouse fetal genital tubercle. Cells Tissues Organs. 1999;164:125–30.CrossRef Kurzrock EA, Baskin LS, Li Y, Cunha GR. Epithelial-mesenchymal interactions in development of the mouse fetal genital tubercle. Cells Tissues Organs. 1999;164:125–30.CrossRef
3.
go back to reference Gredler ML, Seifert AW, Cohn MJ. Tissue-specific roles of fgfr2 in development of the external genitalia. Development. 2015;142:2203–12.CrossRef Gredler ML, Seifert AW, Cohn MJ. Tissue-specific roles of fgfr2 in development of the external genitalia. Development. 2015;142:2203–12.CrossRef
4.
go back to reference Harada M, Omori A, Nakahara C, Nakagata N, Akita K, Yamada G. Tissue-specific roles of FGF signaling in external genitalia development. Dev Dyn. 2015;244:759–73.CrossRef Harada M, Omori A, Nakahara C, Nakagata N, Akita K, Yamada G. Tissue-specific roles of FGF signaling in external genitalia development. Dev Dyn. 2015;244:759–73.CrossRef
5.
go back to reference Qiao L, Tasian GE, Zhang H, Cao M, Ferretti M, Cunha GR, et al. Androgen receptor is overexpressed in boys with severe hypospadias, and ZEB1 regulates androgen receptor expression in human foreskin cells. Pediatr Res. 2012;71:393–8.CrossRef Qiao L, Tasian GE, Zhang H, Cao M, Ferretti M, Cunha GR, et al. Androgen receptor is overexpressed in boys with severe hypospadias, and ZEB1 regulates androgen receptor expression in human foreskin cells. Pediatr Res. 2012;71:393–8.CrossRef
6.
go back to reference Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol. 2007;37(Suppl 1):S53–60.CrossRef Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol. 2007;37(Suppl 1):S53–60.CrossRef
7.
go back to reference Ganor Y, Bomsel M. HIV-1 transmission in the male genital tract. Am J Reprod Immunol. 2011;65:284–91.CrossRef Ganor Y, Bomsel M. HIV-1 transmission in the male genital tract. Am J Reprod Immunol. 2011;65:284–91.CrossRef
8.
go back to reference Woodham AW, Yan L, Skeate JG, van der Veen D, Brand HE, Wong MK, et al. T cell ignorance is bliss: T cells are not tolerized by langerhans cells presenting human papillomavirus antigens in the absence of costimulation. Papillomavirus Res. 2016;2:21–30.CrossRef Woodham AW, Yan L, Skeate JG, van der Veen D, Brand HE, Wong MK, et al. T cell ignorance is bliss: T cells are not tolerized by langerhans cells presenting human papillomavirus antigens in the absence of costimulation. Papillomavirus Res. 2016;2:21–30.CrossRef
9.
go back to reference Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, et al. Langerin, a novel c-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of birbeck granules. Immunity. 2000;12:71–81.CrossRef Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, et al. Langerin, a novel c-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of birbeck granules. Immunity. 2000;12:71–81.CrossRef
10.
go back to reference Schuster C, Vaculik C, Fiala C, Meindl S, Brandt O, Imhof M, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigen-presenting cells. J Exp Med. 2009;206:169–81.CrossRef Schuster C, Vaculik C, Fiala C, Meindl S, Brandt O, Imhof M, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigen-presenting cells. J Exp Med. 2009;206:169–81.CrossRef
11.
go back to reference Ober-Blöbaum JL, Ortner D, Haid B, Brand A, Tripp C, et al. Monitoring skin dendritic cells in steady state and inflammation by immunofluorescence microscopy and flow cytometry. In: Inflammation methods and protocols. New York: Springer Science and Business Media; 2017. p. 37–53.CrossRef Ober-Blöbaum JL, Ortner D, Haid B, Brand A, Tripp C, et al. Monitoring skin dendritic cells in steady state and inflammation by immunofluorescence microscopy and flow cytometry. In: Inflammation methods and protocols. New York: Springer Science and Business Media; 2017. p. 37–53.CrossRef
12.
go back to reference Pechriggl EJ, Bitsche M, Blumer MJF, Fritsch H. The male urethra: spatiotemporal distribution of molecular markers during early development. Ann Anat. 2013;195:260–71.CrossRef Pechriggl EJ, Bitsche M, Blumer MJF, Fritsch H. The male urethra: spatiotemporal distribution of molecular markers during early development. Ann Anat. 2013;195:260–71.CrossRef
13.
go back to reference Qin X-Y, Sone H, Kojima Y, Mizuno K, Ueoka K, Muroya K, et al. Individual variation of the genetic response to bisphenol a in human foreskin fibroblast cells derived from cryptorchidism and hypospadias patients. PLoS One. 2012;7:e52756.CrossRef Qin X-Y, Sone H, Kojima Y, Mizuno K, Ueoka K, Muroya K, et al. Individual variation of the genetic response to bisphenol a in human foreskin fibroblast cells derived from cryptorchidism and hypospadias patients. PLoS One. 2012;7:e52756.CrossRef
14.
go back to reference Spinoit A-F, Van Praet C, Groen L-A, Van Laecke E, Praet M, Hoebeke P. Congenital penile pathology is associated with abnormal development of the dartos muscle: a prospective study in a large cohort of children undergoing primary penile surgery at a tertiary referral center. J Urol. 2014. Spinoit A-F, Van Praet C, Groen L-A, Van Laecke E, Praet M, Hoebeke P. Congenital penile pathology is associated with abnormal development of the dartos muscle: a prospective study in a large cohort of children undergoing primary penile surgery at a tertiary referral center. J Urol. 2014.
15.
go back to reference Qiao L, Tasian GE, Zhang H, Cunha GR, Baskin L. ZEB1 is estrogen responsive in vitro in human foreskin cells and is over expressed in penile skin in patients with severe hypospadias. J Urol. 2011;185:1888–93.CrossRef Qiao L, Tasian GE, Zhang H, Cunha GR, Baskin L. ZEB1 is estrogen responsive in vitro in human foreskin cells and is over expressed in penile skin in patients with severe hypospadias. J Urol. 2011;185:1888–93.CrossRef
16.
go back to reference Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, et al. ZEB1, ZEB2, and the mir-200 family form a counterregulatory network to regulate CD8+T cell fates. J Exp Med. 2018. Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, et al. ZEB1, ZEB2, and the mir-200 family form a counterregulatory network to regulate CD8+T cell fates. J Exp Med. 2018.
17.
go back to reference Konradi S, Yasmin N, Haslwanter D, Weber M, Gesslbauer B, Sixt M, et al. Langerhans cell maturation is accompanied by induction of n-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2. Eur J Immunol. 2014;44:553–60.CrossRef Konradi S, Yasmin N, Haslwanter D, Weber M, Gesslbauer B, Sixt M, et al. Langerhans cell maturation is accompanied by induction of n-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2. Eur J Immunol. 2014;44:553–60.CrossRef
18.
go back to reference Tripp CH, Chang-Rodriguez S, Stoitzner P, Holzmann S, Stössel H, Douillard P, et al. Ontogeny of langerin/CD207 expression in the epidermis of mice. J Invest Dermatol. 2004;122:670–2.CrossRef Tripp CH, Chang-Rodriguez S, Stoitzner P, Holzmann S, Stössel H, Douillard P, et al. Ontogeny of langerin/CD207 expression in the epidermis of mice. J Invest Dermatol. 2004;122:670–2.CrossRef
19.
go back to reference Schöppl A, Botta A, Prior M, Akgün J, Schuster C, Elbe-Bürger A. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin. Acta Histochem. 2015;117:425–30.CrossRef Schöppl A, Botta A, Prior M, Akgün J, Schuster C, Elbe-Bürger A. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin. Acta Histochem. 2015;117:425–30.CrossRef
20.
go back to reference Schuster C, Mildner M, Mairhofer M, Bauer W, Fiala C, Prior M, et al. Human embryonic epidermis contains a diverse langerhans cell precursor pool. Development. 2014;141:807–15.CrossRef Schuster C, Mildner M, Mairhofer M, Bauer W, Fiala C, Prior M, et al. Human embryonic epidermis contains a diverse langerhans cell precursor pool. Development. 2014;141:807–15.CrossRef
21.
go back to reference Hussain LA, Lehner T. Comparative investigation of langerhans’ cells and potential receptors for HIV in oral, genitourinary and rectal epithelia. Immunology. 1995;85:475–84.PubMedPubMedCentral Hussain LA, Lehner T. Comparative investigation of langerhans’ cells and potential receptors for HIV in oral, genitourinary and rectal epithelia. Immunology. 1995;85:475–84.PubMedPubMedCentral
22.
go back to reference Tobian AAR, Serwadda D, Quinn TC, Kigozi G, Gravitt PE, Laeyendecker O, et al. Male circumcision for the prevention of HSV-2 and HPV infections and syphilis. N Engl J Med. 2009;360:1298–309.CrossRef Tobian AAR, Serwadda D, Quinn TC, Kigozi G, Gravitt PE, Laeyendecker O, et al. Male circumcision for the prevention of HSV-2 and HPV infections and syphilis. N Engl J Med. 2009;360:1298–309.CrossRef
23.
go back to reference Ganor Y, Zhou Z, Tudor D, Schmitt A, Vacher-Lavenu M-C, Gibault L, et al. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages langerhans-t cell conjugates. Mucosal Immunol. 2010;3:506–22.CrossRef Ganor Y, Zhou Z, Tudor D, Schmitt A, Vacher-Lavenu M-C, Gibault L, et al. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages langerhans-t cell conjugates. Mucosal Immunol. 2010;3:506–22.CrossRef
24.
go back to reference Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol. 2013;87:6062–72.CrossRef Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol. 2013;87:6062–72.CrossRef
25.
go back to reference Grabowski MK, Kong X, Gray RH, Serwadda D, Kigozi G, Gravitt PE, et al. Partner human papillomavirus viral load and incident human papillomavirus detection in heterosexual couples. J Infect Dis. 2016;213:948–56.CrossRef Grabowski MK, Kong X, Gray RH, Serwadda D, Kigozi G, Gravitt PE, et al. Partner human papillomavirus viral load and incident human papillomavirus detection in heterosexual couples. J Infect Dis. 2016;213:948–56.CrossRef
26.
go back to reference van Esch EMG, van Poelgeest MIE, Trimbos JBMZ, Fleuren GJ, Jordanova ES, van der Burg SH. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of hpv-induced vulvar neoplasia. Int J Cancer. 2015;136:E85–94.CrossRef van Esch EMG, van Poelgeest MIE, Trimbos JBMZ, Fleuren GJ, Jordanova ES, van der Burg SH. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of hpv-induced vulvar neoplasia. Int J Cancer. 2015;136:E85–94.CrossRef
27.
go back to reference Ortner D, Tripp CH, Komenda K, Dubrac S, Zelger B, Hermann M, et al. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology. 2017;6:e1260215.CrossRef Ortner D, Tripp CH, Komenda K, Dubrac S, Zelger B, Hermann M, et al. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology. 2017;6:e1260215.CrossRef
28.
go back to reference Hofer MD, Cheng EY, Bury MI, Xu W, Hong SJ, Kaplan WE, et al. Androgen supplementation in rats increases the inflammatory response and prolongs urethral healing. Urology. 2015;85:691–7.CrossRef Hofer MD, Cheng EY, Bury MI, Xu W, Hong SJ, Kaplan WE, et al. Androgen supplementation in rats increases the inflammatory response and prolongs urethral healing. Urology. 2015;85:691–7.CrossRef
29.
go back to reference Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, et al. High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity. 2017;47:1037–1050.e6.CrossRef Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, et al. High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity. 2017;47:1037–1050.e6.CrossRef
30.
go back to reference Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell rna-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017;356: 6335, eaah4573.CrossRef Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell rna-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017;356: 6335, eaah4573.CrossRef
31.
go back to reference Petiot A, Petiot A, Perriton CL, Dickson C, Cohn MJ. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development. 2005;132:2441–50.CrossRef Petiot A, Petiot A, Perriton CL, Dickson C, Cohn MJ. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development. 2005;132:2441–50.CrossRef
32.
go back to reference Ober-Blöbaum JL, Ortner D, Haid B, Brand A, Tripp C, Clausen BE, et al. Monitoring skin dendritic cells in steady state and inflammation by immunofluorescence microscopy and flow Cytometry. Methods Mol. Biol. New York, NY: Springer New York; 2017;1559:37–52.CrossRef Ober-Blöbaum JL, Ortner D, Haid B, Brand A, Tripp C, Clausen BE, et al. Monitoring skin dendritic cells in steady state and inflammation by immunofluorescence microscopy and flow Cytometry. Methods Mol. Biol. New York, NY: Springer New York; 2017;1559:37–52.CrossRef
Metadata
Title
Langerhans cells in hypospadias: an analysis of Langerin (CD207) and HLA-DR on epidermal sheets and full thickness skin sections
Authors
Bernhard Haid
Daniela Reider
Felix Nägele
Anne-Françoise Spinoit
Elisabeth Pechriggl
Nikolaus Romani
Helga Fritsch
Josef Oswald
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2019
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-019-0551-8

Other articles of this Issue 1/2019

BMC Urology 1/2019 Go to the issue