Skip to main content
Top
Published in: AIDS Research and Therapy 1/2023

Open Access 01-12-2023 | Human Immunodeficiency Virus | Review

HIV-1-related factors interact with p53 to influence cellular processes

Authors: Shanling Liu, Ting Guo, Jinwei Hu, Weiliang Huang, Pengfei She, Yong Wu

Published in: AIDS Research and Therapy | Issue 1/2023

Login to get access

Abstract

Human immunodeficiency virus type 1 (HIV-1) is the primary epidemic strain in China. Its genome contains two regulatory genes (tat and rev), three structural genes (gag, pol, and env), and four accessory genes (nef, vpr, vpu, and vif). Long terminal repeats (LTRs) in thegenome regulate integration, duplication, and expression of viral gene. The permissibility of HIV-1 infection hinges on the host cell cycle status. HIV-1 replicates by exploiting various cellular processes via upregulation or downregulation of specific cellular proteins that also control viral pathogenesis. For example, HIV-1 regulates the life cycle of p53, which in turn contributes significantly to HIV-1 pathogenesis. In this article, we review the interaction between HIV-1-associated factors and p53, providing information on their regulatory and molecular mechanisms, hinting possible directions for further research.
Literature
1.
go back to reference Connor. RI, Cao. MH, Ho Y. Increased viral burden and cytopathicity correlate temporally with CD4 + T-Lymphocyte decline and clinical progression in human immunodeficiency virus type 1-Infected individuals. J Virol. 1993;67(4):1772–7.PubMedPubMedCentral Connor. RI, Cao. MH, Ho Y. Increased viral burden and cytopathicity correlate temporally with CD4 + T-Lymphocyte decline and clinical progression in human immunodeficiency virus type 1-Infected individuals. J Virol. 1993;67(4):1772–7.PubMedPubMedCentral
2.
go back to reference Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.PubMedPubMedCentral Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.PubMedPubMedCentral
3.
go back to reference Swanson CM, Malim MH, SnapShot. HIV-1 proteins. Cell. 2008;133(4):742–3.PubMed Swanson CM, Malim MH, SnapShot. HIV-1 proteins. Cell. 2008;133(4):742–3.PubMed
4.
go back to reference Raja R, Ronsard L, Lata S, Trivedi S, Banerjea AC. HIV-1 Tat potently stabilises Mdm2 and enhances viral replication. Biochem J. 2017;474(14):2449–64.PubMed Raja R, Ronsard L, Lata S, Trivedi S, Banerjea AC. HIV-1 Tat potently stabilises Mdm2 and enhances viral replication. Biochem J. 2017;474(14):2449–64.PubMed
5.
go back to reference Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Bio. 2015;16(7):393–405. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Bio. 2015;16(7):393–405.
6.
go back to reference Levine AJ. Reviewing the future of the P53 field. Cell Death Differ. 2018;25(1):1–2.PubMed Levine AJ. Reviewing the future of the P53 field. Cell Death Differ. 2018;25(1):1–2.PubMed
7.
go back to reference Hanprasertpong J, Tungsinmunkong K, Chichareon S, Wootipoom V, Geater A, Buhachat R, et al. Correlation of p53 and Ki-67 (MIB-1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas. J Obstet Gynaecol Res. 2010;36(3):572–80.PubMed Hanprasertpong J, Tungsinmunkong K, Chichareon S, Wootipoom V, Geater A, Buhachat R, et al. Correlation of p53 and Ki-67 (MIB-1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas. J Obstet Gynaecol Res. 2010;36(3):572–80.PubMed
8.
go back to reference Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.PubMed Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.PubMed
9.
go back to reference Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res. 2005;569(1–2):145–57.PubMed Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res. 2005;569(1–2):145–57.PubMed
10.
go back to reference Arakawa TH, Yamaguchi. H, Shiraishi. T, Matsui KFukudaS. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404(6773):42–9.PubMed Arakawa TH, Yamaguchi. H, Shiraishi. T, Matsui KFukudaS. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404(6773):42–9.PubMed
11.
go back to reference Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784.PubMed Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784.PubMed
12.
go back to reference Kinnetz M, Alghamdi F, Racz M, Hu W, Shi B. The impact of p53 on the early stage replication of retrovirus. Virol J. 2017;14(1):151–62.PubMedPubMedCentral Kinnetz M, Alghamdi F, Racz M, Hu W, Shi B. The impact of p53 on the early stage replication of retrovirus. Virol J. 2017;14(1):151–62.PubMedPubMedCentral
13.
go back to reference Uesugi M, Verdine, OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. GL. The α-helical FXX⌽⌽ motif in p53: TAF interaction and discrimination by MDM2. PROCEEDINGS. 1999;96(26):14801–6. Uesugi M, Verdine, OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. GL. The α-helical FXX⌽⌽ motif in p53: TAF interaction and discrimination by MDM2. PROCEEDINGS. 1999;96(26):14801–6.
14.
go back to reference Haupt Y, Maya. R, Kazaz. A, Oren. M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMed Haupt Y, Maya. R, Kazaz. A, Oren. M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMed
15.
go back to reference Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 2018;124(1):84–94.PubMed Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 2018;124(1):84–94.PubMed
16.
go back to reference Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol. 2002;76(6):2692–702.PubMedPubMedCentral Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol. 2002;76(6):2692–702.PubMedPubMedCentral
17.
go back to reference Brochado O, Martinez I, Berenguer J, Medrano L, Gonzalez-Garcia J, Jimenez-Sousa MA, et al. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci. 2021;28(1):23.PubMedPubMedCentral Brochado O, Martinez I, Berenguer J, Medrano L, Gonzalez-Garcia J, Jimenez-Sousa MA, et al. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci. 2021;28(1):23.PubMedPubMedCentral
18.
go back to reference Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov. 2020;6:53–67.PubMedPubMedCentral Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov. 2020;6:53–67.PubMedPubMedCentral
19.
go back to reference Gichuhi S, Ohnuma S, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res. 2014;129:172–82.PubMedPubMedCentral Gichuhi S, Ohnuma S, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res. 2014;129:172–82.PubMedPubMedCentral
20.
go back to reference Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY et al. ROS-Induced mitochondrial dysfunction in CD4 T cells from ART-Controlled people living with HIV. Viruses. 2023;15(5). Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY et al. ROS-Induced mitochondrial dysfunction in CD4 T cells from ART-Controlled people living with HIV. Viruses. 2023;15(5).
21.
go back to reference Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, et al. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS ONE. 2014;9(6):545–55. Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, et al. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS ONE. 2014;9(6):545–55.
22.
go back to reference Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020;529(4):1038–44.PubMed Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020;529(4):1038–44.PubMed
23.
go back to reference Wilson KM, He JJ. HIV Nef expression down-modulated GFAP expression and altered glutamate uptake and release and proliferation in astrocytes. Aging Dis. 2023;14(1):152–69.PubMedPubMedCentral Wilson KM, He JJ. HIV Nef expression down-modulated GFAP expression and altered glutamate uptake and release and proliferation in astrocytes. Aging Dis. 2023;14(1):152–69.PubMedPubMedCentral
24.
go back to reference Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 2020;529(4):1038–44. Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 2020;529(4):1038–44.
25.
go back to reference Chugh P, Fan S, Planelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol. 2007;366(1):67–81.PubMed Chugh P, Fan S, Planelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol. 2007;366(1):67–81.PubMed
26.
go back to reference McLemore MS, Haigentz M Jr, Smith RV, Nuovo GJ, Alos L, Cardesa A, et al. Head and neck squamous cell carcinomas in HIV-positive patients: a preliminary investigation of viral associations. Head Neck Pathol. 2010;4(2):97–105.PubMedPubMedCentral McLemore MS, Haigentz M Jr, Smith RV, Nuovo GJ, Alos L, Cardesa A, et al. Head and neck squamous cell carcinomas in HIV-positive patients: a preliminary investigation of viral associations. Head Neck Pathol. 2010;4(2):97–105.PubMedPubMedCentral
27.
go back to reference Park S, Auyeung A, Lee DL, Lambert PF, Carchman EH, Sherer NM. HIV-1 protease inhibitors slow HPV16-Driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel). 2021;13(5). Park S, Auyeung A, Lee DL, Lambert PF, Carchman EH, Sherer NM. HIV-1 protease inhibitors slow HPV16-Driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel). 2021;13(5).
28.
go back to reference Souza. RP, Abreu GF, ALd et al. Rocha-Brischiliari. SC, Carvalho. MDd, Ferreira. EC,. Differences in the mutation of the p53 gene in exons 6 and 7 in cervical samples from HIV- and HPV-infected women. Infectious Agents and Cancer. 2013;8(1):38–42. Souza. RP, Abreu GF, ALd et al. Rocha-Brischiliari. SC, Carvalho. MDd, Ferreira. EC,. Differences in the mutation of the p53 gene in exons 6 and 7 in cervical samples from HIV- and HPV-infected women. Infectious Agents and Cancer. 2013;8(1):38–42.
29.
go back to reference Barillari G, Palladino C, Bacigalupo I, Leone P, Falchi M, Ensoli B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol Lett. 2016;12(4):2389–94.PubMedPubMedCentral Barillari G, Palladino C, Bacigalupo I, Leone P, Falchi M, Ensoli B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol Lett. 2016;12(4):2389–94.PubMedPubMedCentral
30.
go back to reference Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV protease inhibitors against HPV-Associated Cervical Cancer: restoration of TP53 tumour suppressor activities. Front Mol Biosci. 2022;9:875208.PubMedPubMedCentral Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV protease inhibitors against HPV-Associated Cervical Cancer: restoration of TP53 tumour suppressor activities. Front Mol Biosci. 2022;9:875208.PubMedPubMedCentral
31.
go back to reference Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, et al. Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem. 2003;278(14):12310–8.PubMed Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, et al. Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem. 2003;278(14):12310–8.PubMed
32.
go back to reference Guendel I, Carpio L, Easley R, Van Duyne R, Coley W, Agbottah E, et al. 9-Aminoacridine inhibition of HIV-1 Tat dependent transcription. Virol J. 2009;6:114–27.PubMedPubMedCentral Guendel I, Carpio L, Easley R, Van Duyne R, Coley W, Agbottah E, et al. 9-Aminoacridine inhibition of HIV-1 Tat dependent transcription. Virol J. 2009;6:114–27.PubMedPubMedCentral
33.
go back to reference Ariumi Y, Kaida A, Hatanaka M, Shimotohno K. Functional cross-talk of HIV-1 Tat with p53 through its C-terminal domain. Biochem Biophys Res Commun. 2001;287(2):556–61.PubMed Ariumi Y, Kaida A, Hatanaka M, Shimotohno K. Functional cross-talk of HIV-1 Tat with p53 through its C-terminal domain. Biochem Biophys Res Commun. 2001;287(2):556–61.PubMed
34.
go back to reference Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther. 2009;9(11):1369–82.PubMedPubMedCentral Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther. 2009;9(11):1369–82.PubMedPubMedCentral
35.
go back to reference Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784–95.PubMed Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784–95.PubMed
36.
go back to reference Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, et al. VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate Cancer. Mol Cancer Res. 2022;20(7):1047–60.PubMedPubMedCentral Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, et al. VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate Cancer. Mol Cancer Res. 2022;20(7):1047–60.PubMedPubMedCentral
37.
go back to reference Choi HK, Choi KC, Kang HB, Kim HC, Lee YH, Haam S, et al. Function of multiple lis-homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol Endocrinol. 2008;22(5):1093–104.PubMedPubMedCentral Choi HK, Choi KC, Kang HB, Kim HC, Lee YH, Haam S, et al. Function of multiple lis-homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol Endocrinol. 2008;22(5):1093–104.PubMedPubMedCentral
38.
go back to reference Hrecka. K, Gierszewska. M, Kozaczkiewicz. SS, Swanson L, SK, Florens. L et al. Lentiviral Vpr usurps Cul4–DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2007;104(28):11778–83. Hrecka. K, Gierszewska. M, Kozaczkiewicz. SS, Swanson L, SK, Florens. L et al. Lentiviral Vpr usurps Cul4–DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2007;104(28):11778–83.
39.
go back to reference Kim K, Heo K, Choi J, Jackson S, Kim H, Xiong Y, et al. Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol. 2012;32(4):783–96.PubMedPubMedCentral Kim K, Heo K, Choi J, Jackson S, Kim H, Xiong Y, et al. Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol. 2012;32(4):783–96.PubMedPubMedCentral
40.
go back to reference Lin S, Cheng H, Yang G, Wang C, Leung CK, Zhang S et al. NRF2 antagonizes HIV-1 Tat and Methamphetamine-Induced BV2 Cell ferroptosis by regulating SLC7A11. Neurotox Res. 2023. Lin S, Cheng H, Yang G, Wang C, Leung CK, Zhang S et al. NRF2 antagonizes HIV-1 Tat and Methamphetamine-Induced BV2 Cell ferroptosis by regulating SLC7A11. Neurotox Res. 2023.
41.
go back to reference Mukerjee. R, Deshmane. SL FS, Valle. LD, White K et al. Involvement of the p53 and p73 transcription factors in neuroAIDS. Cell Cycle. 2008;7(17):2682–90. Mukerjee. R, Deshmane. SL FS, Valle. LD, White K et al. Involvement of the p53 and p73 transcription factors in neuroAIDS. Cell Cycle. 2008;7(17):2682–90.
42.
go back to reference Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis. 2012;9(2):68–80.PubMed Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis. 2012;9(2):68–80.PubMed
43.
go back to reference Zhao J, Chen J, Lu B, Dong L, Wang H, Bi C, et al. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res. 2008;68(11):4133–41.PubMed Zhao J, Chen J, Lu B, Dong L, Wang H, Bi C, et al. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res. 2008;68(11):4133–41.PubMed
44.
go back to reference Lee SH, Ju SK, Lee TY, Huh SH, Han KH. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol Cells. 2012;34(5):495–500.PubMedPubMedCentral Lee SH, Ju SK, Lee TY, Huh SH, Han KH. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol Cells. 2012;34(5):495–500.PubMedPubMedCentral
45.
go back to reference Castedo M, Roumier. T, Ferri. KF BJ, Tintignac BJ. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. Embo J. 2002;21(15):4070–80.PubMedPubMedCentral Castedo M, Roumier. T, Ferri. KF BJ, Tintignac BJ. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. Embo J. 2002;21(15):4070–80.PubMedPubMedCentral
46.
go back to reference Feng J, Bao L, Wang X, Li H, Chen Y, Xiao W, et al. Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney Int. 2021;99(4):914–25.PubMed Feng J, Bao L, Wang X, Li H, Chen Y, Xiao W, et al. Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney Int. 2021;99(4):914–25.PubMed
47.
go back to reference Lu F, Zankharia U, Vladimirova O, Yi Y, Collman RG, Lieberman PM. Epigenetic Landscape of HIV-1 infection in primary human macrophage. J Virol. 2022;96(7):e0016222.PubMed Lu F, Zankharia U, Vladimirova O, Yi Y, Collman RG, Lieberman PM. Epigenetic Landscape of HIV-1 infection in primary human macrophage. J Virol. 2022;96(7):e0016222.PubMed
48.
go back to reference Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4 + T cells. Retrovirology. 2009;6:5–18.PubMedPubMedCentral Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4 + T cells. Retrovirology. 2009;6:5–18.PubMedPubMedCentral
49.
go back to reference Khan MZ, Shimizu S, Patel JP, Nelson A, Le MT, Mullen-Przeworski A, et al. Regulation of neuronal P53 activity by CXCR 4. Mol Cell Neurosci. 2005;30(1):58–66.PubMedPubMedCentral Khan MZ, Shimizu S, Patel JP, Nelson A, Le MT, Mullen-Przeworski A, et al. Regulation of neuronal P53 activity by CXCR 4. Mol Cell Neurosci. 2005;30(1):58–66.PubMedPubMedCentral
50.
go back to reference Perfettini JL, Castedo M, Roumier T, Andreau K, Nardacci R, Piacentini M, et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ. 2005;12:916–23.PubMed Perfettini JL, Castedo M, Roumier T, Andreau K, Nardacci R, Piacentini M, et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ. 2005;12:916–23.PubMed
51.
go back to reference Garden GA, Guo W, Tun. JS, Balcaitis. C, Choi S. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004;18(10):1141–3.PubMed Garden GA, Guo W, Tun. JS, Balcaitis. C, Choi S. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004;18(10):1141–3.PubMed
52.
go back to reference Izumi T, Io K, Matsui M, Shirakawa K, Shinohara M, Nagai Y et al. HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2010;107(48):20798-803. Izumi T, Io K, Matsui M, Shirakawa K, Shinohara M, Nagai Y et al. HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2010;107(48):20798-803.
53.
go back to reference Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A, et al. Micro RNA targets in HIV latency: insights into Novel layers of latency control. AIDS Res Hum Retroviruses. 2021;37(2):109–21.PubMedPubMedCentral Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A, et al. Micro RNA targets in HIV latency: insights into Novel layers of latency control. AIDS Res Hum Retroviruses. 2021;37(2):109–21.PubMedPubMedCentral
54.
go back to reference Yoon CH, Kim SY, Byeon SE, Jeong Y, Lee J, Kim KP, et al. p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol. 2015;89(8):4262–80.PubMedPubMedCentral Yoon CH, Kim SY, Byeon SE, Jeong Y, Lee J, Kim KP, et al. p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol. 2015;89(8):4262–80.PubMedPubMedCentral
55.
go back to reference Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, et al. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J. 2018;15(1):53–65.PubMedPubMedCentral Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, et al. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J. 2018;15(1):53–65.PubMedPubMedCentral
56.
go back to reference Wang X, Zhao J, Biswas S, Devadas K, Hewlett I. Components of apoptotic pathways modulate HIV-1 latency in jurkat cells. Microbes Infect. 2022;24(3):104912.PubMed Wang X, Zhao J, Biswas S, Devadas K, Hewlett I. Components of apoptotic pathways modulate HIV-1 latency in jurkat cells. Microbes Infect. 2022;24(3):104912.PubMed
57.
go back to reference Bagashev A, Fan S, Mukerjee R, Claudio PP, Chabrashvili T, Leng RP, et al. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle. 2013;12(10):1569–77.PubMedPubMedCentral Bagashev A, Fan S, Mukerjee R, Claudio PP, Chabrashvili T, Leng RP, et al. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle. 2013;12(10):1569–77.PubMedPubMedCentral
58.
go back to reference Mukerjee R, Claudio PP, Chang JR, Del Valle L, Sawaya BE. Transcriptional regulation of HIV-1 gene expression by p53. Cell Cycle. 2010;9(22):4569–78.PubMedPubMedCentral Mukerjee R, Claudio PP, Chang JR, Del Valle L, Sawaya BE. Transcriptional regulation of HIV-1 gene expression by p53. Cell Cycle. 2010;9(22):4569–78.PubMedPubMedCentral
59.
go back to reference Bellini N, Lodge R, Pham TNQ, Jain J, Murooka TT, Herschhorn A, et al. MiRNA-103 downmodulates CCR5 expression reducing human immunodeficiency virus type-1 entry and impacting latency establishment in CD4(+) T cells. iScience. 2022;25(10):105234.PubMedPubMedCentral Bellini N, Lodge R, Pham TNQ, Jain J, Murooka TT, Herschhorn A, et al. MiRNA-103 downmodulates CCR5 expression reducing human immunodeficiency virus type-1 entry and impacting latency establishment in CD4(+) T cells. iScience. 2022;25(10):105234.PubMedPubMedCentral
60.
go back to reference OZAKI. I DUANL, JW OAKES, JP TAYLOR, K KHALILI. POMERANTZ. RJ. The Tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol. 1994;68(7):4302–13.PubMedPubMedCentral OZAKI. I DUANL, JW OAKES, JP TAYLOR, K KHALILI. POMERANTZ. RJ. The Tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol. 1994;68(7):4302–13.PubMedPubMedCentral
61.
go back to reference Giagulli C, Caccuri F, Zorzan S, Bugatti A, Zani A, Filippini F, et al. B-cell clonogenic activity of HIV-1 p17 variants is driven by PAR1-mediated EGF transactivation. Cancer Gene Ther. 2021;28(6):649–66.PubMed Giagulli C, Caccuri F, Zorzan S, Bugatti A, Zani A, Filippini F, et al. B-cell clonogenic activity of HIV-1 p17 variants is driven by PAR1-mediated EGF transactivation. Cancer Gene Ther. 2021;28(6):649–66.PubMed
62.
go back to reference Akwiwu E, Okafor A, Akpan P, Akpotuzor J, Asemota E, Okoroiwu H, et al. Serum P53 protein level and some haematologic parameters among women of Reproductive Age living with HIV infection. Niger J Physiol Sci. 2021;36(1):85–9.PubMed Akwiwu E, Okafor A, Akpan P, Akpotuzor J, Asemota E, Okoroiwu H, et al. Serum P53 protein level and some haematologic parameters among women of Reproductive Age living with HIV infection. Niger J Physiol Sci. 2021;36(1):85–9.PubMed
63.
go back to reference Lodge R, Bellini N, Laporte M, Salahuddin S, Routy JP, Ancuta P et al. Interleukin-1beta triggers p53-Mediated Downmodulation of CCR5 and HIV-1 entry in Macrophages through MicroRNAs 103 and 107. mBio. 2020;11(5). Lodge R, Bellini N, Laporte M, Salahuddin S, Routy JP, Ancuta P et al. Interleukin-1beta triggers p53-Mediated Downmodulation of CCR5 and HIV-1 entry in Macrophages through MicroRNAs 103 and 107. mBio. 2020;11(5).
64.
go back to reference CH KIM, Chronic CHIPLUNKARSGUPTAS. Type 1 infection down-regulates expression of DAP kinase and p19ARF-p53 checkpoint and is Associated with Resistance to CD95-Mediated apoptosis in HUT78 T cells. AIDS Res Hum Retrov. 2004;20(2):183–9. CH KIM, Chronic CHIPLUNKARSGUPTAS. Type 1 infection down-regulates expression of DAP kinase and p19ARF-p53 checkpoint and is Associated with Resistance to CD95-Mediated apoptosis in HUT78 T cells. AIDS Res Hum Retrov. 2004;20(2):183–9.
65.
go back to reference Lu F, Zankharia U, Vladimirova O, Yi Y, Collman RG, Lieberman PM. Epigenetic Landscape of HIV-1 infection in primary human macrophage. J Virol. 2022;96(7):162–77. Lu F, Zankharia U, Vladimirova O, Yi Y, Collman RG, Lieberman PM. Epigenetic Landscape of HIV-1 infection in primary human macrophage. J Virol. 2022;96(7):162–77.
66.
go back to reference Bakhanashvili M, Novitsky E, Lilling G, Rahav G. P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene. 2004;23(41):6890–9.PubMed Bakhanashvili M, Novitsky E, Lilling G, Rahav G. P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene. 2004;23(41):6890–9.PubMed
67.
go back to reference Jayadev S, Nesser NK, Hopkins S, Myers SJ, Case A, Lee RJ, et al. Transcription factor p53 influences microglial activation phenotype. Glia. 2011;59(10):1402–13.PubMedPubMedCentral Jayadev S, Nesser NK, Hopkins S, Myers SJ, Case A, Lee RJ, et al. Transcription factor p53 influences microglial activation phenotype. Glia. 2011;59(10):1402–13.PubMedPubMedCentral
68.
go back to reference Breton Y, Barat C, Tremblay MJ. The balance between p53 isoforms modulates the efficiency of HIV-1 infection in macrophages. J Virol. 2021;95(20):188–204. Breton Y, Barat C, Tremblay MJ. The balance between p53 isoforms modulates the efficiency of HIV-1 infection in macrophages. J Virol. 2021;95(20):188–204.
69.
go back to reference Wu W, Kehn-Hall K, Pedati C, Zweier L, Castro I, Klase Z, et al. Drug 9AA reactivates p21/Waf1 and inhibits HIV-1 progeny formation. Virol J. 2008;5:41–9.PubMedPubMedCentral Wu W, Kehn-Hall K, Pedati C, Zweier L, Castro I, Klase Z, et al. Drug 9AA reactivates p21/Waf1 and inhibits HIV-1 progeny formation. Virol J. 2008;5:41–9.PubMedPubMedCentral
Metadata
Title
HIV-1-related factors interact with p53 to influence cellular processes
Authors
Shanling Liu
Ting Guo
Jinwei Hu
Weiliang Huang
Pengfei She
Yong Wu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
AIDS Research and Therapy / Issue 1/2023
Electronic ISSN: 1742-6405
DOI
https://doi.org/10.1186/s12981-023-00563-7

Other articles of this Issue 1/2023

AIDS Research and Therapy 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine