Skip to main content
Top
Published in: Inflammation 3/2022

01-06-2022 | Chloroquin | Original Article

Lipopolysaccharide Accelerates Neuropilin-1 Protein Degradation by Activating the Large GTPase Dynamin-1 in Macrophages

Authors: Suhua Wu, Yueling Huang, Xinliang Huang, Xiaoyan Dai

Published in: Inflammation | Issue 3/2022

Login to get access

Abstract

Neuropilin-1 (Nrp1) is highly expressed in macrophages and plays a critical role in acute and chronic inflammation-associated diseases, such as sepsis, type II diabetes, and metabolic syndrome. Therefore, it is of importance to understand the regulation of Nrp1. It is known that lipopolysaccharide (LPS) downregulates Nrp1 mRNA levels through the NF-κB signaling in macrophages. However, whether and how LPS regulates Nrp1 protein degradation remain unknown. Here, we show that LPS promotes Nrp1 protein decay through a lysosome-dependent manner. Liver kinase B1 (LKB1)-Rab7 does not mediate this process. However, the large GTPase dynamin-1 (Dyn1) but not Dyn2 is involved in LPS-accelerated Nrp1 degradation. Mechanistically, LPS activates Dyn1 by attenuating p-Dyn1 (Ser774) levels, implying increased Nrp1 endocytosis and consequent degradation. As a result, blocking Nrp1 degradation by Dyn1 siRNA attenuates LPS-induced inflammatory response. Collectively, our study shows that LPS promotes Nrp1 protein degradation via a Dyn1-dependent pathway, revealing a previously uncovered role of Dyn1 in LPS-promoted Nrp1 protein decay.
Literature
1.
go back to reference Takagi, S., Y. Kasuya, M. Shimizu, T. Matsuura, M. Tsuboi, A. Kawakami, and H. Fujisawa. 1995. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Developmental Biology 170: 207–222.CrossRef Takagi, S., Y. Kasuya, M. Shimizu, T. Matsuura, M. Tsuboi, A. Kawakami, and H. Fujisawa. 1995. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Developmental Biology 170: 207–222.CrossRef
2.
go back to reference Kolodkin, A.L., D.V. Levengood, E.G. Rowe, Y.T. Tai, R.J. Giger, and D.D. Ginty. 1997. Neuropilin is a semaphorin III receptor. Cell 90: 753–762.CrossRef Kolodkin, A.L., D.V. Levengood, E.G. Rowe, Y.T. Tai, R.J. Giger, and D.D. Ginty. 1997. Neuropilin is a semaphorin III receptor. Cell 90: 753–762.CrossRef
3.
go back to reference Gu, C., E.R. Rodriguez, D.V. Reimert, T. Shu, B. Fritzsch, L.J. Richards, A.L. Kolodkin, and D.D. Ginty. 2003. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Developmental Cell 5: 45–57.CrossRef Gu, C., E.R. Rodriguez, D.V. Reimert, T. Shu, B. Fritzsch, L.J. Richards, A.L. Kolodkin, and D.D. Ginty. 2003. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Developmental Cell 5: 45–57.CrossRef
4.
go back to reference Roy, S., A.K. Bag, R.K. Singh, J.E. Talmadge, S.K. Batra, and K. Datta. 2017. Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Frontiers in Immunology 8: 1228.CrossRef Roy, S., A.K. Bag, R.K. Singh, J.E. Talmadge, S.K. Batra, and K. Datta. 2017. Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Frontiers in Immunology 8: 1228.CrossRef
5.
go back to reference Casazza, A., D. Laoui, M. Wenes, S. Rizzolio, N. Bassani, M. Mambretti, S. Deschoemaeker, J.A. Van Ginderachter, L. Tamagnone, and M. Mazzone. 2013. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24: 695–709.CrossRef Casazza, A., D. Laoui, M. Wenes, S. Rizzolio, N. Bassani, M. Mambretti, S. Deschoemaeker, J.A. Van Ginderachter, L. Tamagnone, and M. Mazzone. 2013. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24: 695–709.CrossRef
6.
go back to reference Miyauchi, J.T., M.D. Caponegro, D. Chen, M.K. Choi, M. Li, and S.E. Tsirka. 2018. Deletion of neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Cancer Research 78: 685–694.CrossRef Miyauchi, J.T., M.D. Caponegro, D. Chen, M.K. Choi, M. Li, and S.E. Tsirka. 2018. Deletion of neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Cancer Research 78: 685–694.CrossRef
7.
go back to reference Dai, X., I. Okon, Z. Liu, T. Bedarida, Q. Wang, T. Ramprasath, M. Zhang, P. Song, and M.H. Zou. 2017. Ablation of neuropilin 1 in myeloid cells exacerbates high-fat diet-induced insulin resistance through Nlrp3 inflammasome in vivo. Diabetes 66: 2424–2435.CrossRef Dai, X., I. Okon, Z. Liu, T. Bedarida, Q. Wang, T. Ramprasath, M. Zhang, P. Song, and M.H. Zou. 2017. Ablation of neuropilin 1 in myeloid cells exacerbates high-fat diet-induced insulin resistance through Nlrp3 inflammasome in vivo. Diabetes 66: 2424–2435.CrossRef
8.
go back to reference Dai, X., I. Okon, Z. Liu, Y. Wu, H. Zhu, P. Song, and M.H. Zou. 2017. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis. The FASEB Journal 31: 2881–2892.CrossRef Dai, X., I. Okon, Z. Liu, Y. Wu, H. Zhu, P. Song, and M.H. Zou. 2017. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis. The FASEB Journal 31: 2881–2892.CrossRef
9.
go back to reference Wilson, A.M., Z. Shao, V. Grenier, G. Mawambo, J.F. Daudelin, A. Dejda, F. Pilon, N. Popovic, S. Boulet, C. Parinot C, et al. 2018. Neuropilin-1 expression in adipose tissue macrophages protects against obesity and metabolic syndrome. Science Immunology 2018. 3. Wilson, A.M., Z. Shao, V. Grenier, G. Mawambo, J.F. Daudelin, A. Dejda, F. Pilon, N. Popovic, S. Boulet, C. Parinot C, et al. 2018. Neuropilin-1 expression in adipose tissue macrophages protects against obesity and metabolic syndrome. Science Immunology 2018. 3.
10.
go back to reference Yamagishi, H., E.N. Olson, and D. Srivastava. 2000. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. The Journal of Clinical Investigation 105: 261–270.CrossRef Yamagishi, H., E.N. Olson, and D. Srivastava. 2000. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. The Journal of Clinical Investigation 105: 261–270.CrossRef
11.
go back to reference Watanabe, D., H. Takagi, K. Suzuma, I. Suzuma, H. Oh, H. Ohashi, S. Kemmochi, A. Uemura, T. Ojima, E. Suganami, et al. 2004. Transcription factor Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal neovascularization. American Journal of Pathology 164: 1827–1835.CrossRef Watanabe, D., H. Takagi, K. Suzuma, I. Suzuma, H. Oh, H. Ohashi, S. Kemmochi, A. Uemura, T. Ojima, E. Suganami, et al. 2004. Transcription factor Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal neovascularization. American Journal of Pathology 164: 1827–1835.CrossRef
12.
go back to reference Bondeva, T., and G. Wolf. 2009. Advanced glycation end products suppress neuropilin-1 expression in podocytes by a reduction in Sp1-dependent transcriptional activity. American Journal of Nephrology 30: 336–345.CrossRef Bondeva, T., and G. Wolf. 2009. Advanced glycation end products suppress neuropilin-1 expression in podocytes by a reduction in Sp1-dependent transcriptional activity. American Journal of Nephrology 30: 336–345.CrossRef
13.
go back to reference Loser, K., W. Hansen, J. Apelt, S. Balkow, J. Buer, and S. Beissert. 2005. In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Therapy 12: 1294–1304.CrossRef Loser, K., W. Hansen, J. Apelt, S. Balkow, J. Buer, and S. Beissert. 2005. In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Therapy 12: 1294–1304.CrossRef
14.
go back to reference Hong, Y.K., N. Harvey, Y.H. Noh, V. Schacht, S. Hirakawa, M. Detmar, and G. Oliver. 2002. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Developmental Dynamics 225: 351–357.CrossRef Hong, Y.K., N. Harvey, Y.H. Noh, V. Schacht, S. Hirakawa, M. Detmar, and G. Oliver. 2002. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Developmental Dynamics 225: 351–357.CrossRef
15.
go back to reference Hayashi, M., T. Nakashima, M. Taniguchi, T. Kodama, A. Kumanogoh, and H. Takayanagi. 2012. Osteoprotection by semaphorin 3A. Nature 485: 69–74.CrossRef Hayashi, M., T. Nakashima, M. Taniguchi, T. Kodama, A. Kumanogoh, and H. Takayanagi. 2012. Osteoprotection by semaphorin 3A. Nature 485: 69–74.CrossRef
16.
go back to reference Fujita, H., B. Zhang, K. Sato, J. Tanaka, and M. Sakanaka. 2001. Expressions of neuropilin-1, neuropilin-2 and semaphorin 3A mRNA in the rat brain after middle cerebral artery occlusion. Brain Research 914: 1–14.CrossRef Fujita, H., B. Zhang, K. Sato, J. Tanaka, and M. Sakanaka. 2001. Expressions of neuropilin-1, neuropilin-2 and semaphorin 3A mRNA in the rat brain after middle cerebral artery occlusion. Brain Research 914: 1–14.CrossRef
17.
go back to reference Okon, I.S., K.A. Coughlan, C. Zhang, C. Moriasi, Y. Ding, P. Song, W. Zhang, G. Li, and M.H. Zou. 2014. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. The Journal of Clinical Investigation 124: 4590–4602.CrossRef Okon, I.S., K.A. Coughlan, C. Zhang, C. Moriasi, Y. Ding, P. Song, W. Zhang, G. Li, and M.H. Zou. 2014. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. The Journal of Clinical Investigation 124: 4590–4602.CrossRef
18.
go back to reference Ferguson, S.M., and P. De Camilli. 2012. Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology 13: 75–88.CrossRef Ferguson, S.M., and P. De Camilli. 2012. Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology 13: 75–88.CrossRef
19.
go back to reference Macia, E., M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. Kirchhausen. 2006. Dynasore, a cell-permeable inhibitor of dynamin. Developmental Cell 10: 839–850.CrossRef Macia, E., M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. Kirchhausen. 2006. Dynasore, a cell-permeable inhibitor of dynamin. Developmental Cell 10: 839–850.CrossRef
20.
go back to reference Bruscia, E.M., P.X. Zhang, A. Satoh, C. Caputo, R. Medzhitov, A. Shenoy, M.E. Egan, and D.S. Krause. 2011. Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. The Journal of Immunology 186: 6990–6998.CrossRef Bruscia, E.M., P.X. Zhang, A. Satoh, C. Caputo, R. Medzhitov, A. Shenoy, M.E. Egan, and D.S. Krause. 2011. Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. The Journal of Immunology 186: 6990–6998.CrossRef
21.
go back to reference Dai, X., Y. Ding, Z. Liu, W. Zhang, and M.H. Zou. 2016. Phosphorylation of CHOP (C/EBP homologous protein) by the AMP-activated protein kinase alpha 1 in macrophages promotes CHOP degradation and reduces injury-induced neointimal disruption in vivo. Circulation Research 119: 1089–1100.CrossRef Dai, X., Y. Ding, Z. Liu, W. Zhang, and M.H. Zou. 2016. Phosphorylation of CHOP (C/EBP homologous protein) by the AMP-activated protein kinase alpha 1 in macrophages promotes CHOP degradation and reduces injury-induced neointimal disruption in vivo. Circulation Research 119: 1089–1100.CrossRef
22.
go back to reference Kalaidzidis, I., M. Miaczynska, M. Brewinska-Olchowik, A. Hupalowska, C. Ferguson, R.G. Parton, Y. Kalaidzidis, and M. Zerial. 2015. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology 211: 123–144.CrossRef Kalaidzidis, I., M. Miaczynska, M. Brewinska-Olchowik, A. Hupalowska, C. Ferguson, R.G. Parton, Y. Kalaidzidis, and M. Zerial. 2015. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology 211: 123–144.CrossRef
23.
go back to reference Tsai, C.C., C.L. Lin, T.L. Wang, A.C. Chou, M.Y. Chou, C.H. Lee, I.W. Peng, J.H. Liao, Y.T. Chen, and C.Y. Pan. 2009. Dynasore inhibits rapid endocytosis in bovine chromaffin cells. American Journal of Physiology. Cell Physiology 297: C397-406.CrossRef Tsai, C.C., C.L. Lin, T.L. Wang, A.C. Chou, M.Y. Chou, C.H. Lee, I.W. Peng, J.H. Liao, Y.T. Chen, and C.Y. Pan. 2009. Dynasore inhibits rapid endocytosis in bovine chromaffin cells. American Journal of Physiology. Cell Physiology 297: C397-406.CrossRef
24.
go back to reference Clayton, E.L., N. Sue, K.J. Smillie, T. O’Leary, N. Bache, G. Cheung, A.R. Cole, D.J. Wyllie, C. Sutherland, P.J. Robinson, and M.A. Cousin. 2010. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nature Neuroscience 13: 845–851.CrossRef Clayton, E.L., N. Sue, K.J. Smillie, T. O’Leary, N. Bache, G. Cheung, A.R. Cole, D.J. Wyllie, C. Sutherland, P.J. Robinson, and M.A. Cousin. 2010. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nature Neuroscience 13: 845–851.CrossRef
25.
go back to reference Vescarelli, E., G. Gerini, F. Megiorni, E. Anastasiadou, P. Pontecorvi, L. Solito, C. De Vitis, S. Camero, C. Marchetti, R. Mancini, et al. 2020. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting neuropilin 1. Journal of Experimental & Clinical Cancer Research 39: 3.CrossRef Vescarelli, E., G. Gerini, F. Megiorni, E. Anastasiadou, P. Pontecorvi, L. Solito, C. De Vitis, S. Camero, C. Marchetti, R. Mancini, et al. 2020. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting neuropilin 1. Journal of Experimental & Clinical Cancer Research 39: 3.CrossRef
26.
go back to reference Kim, H., Y. Ko, H. Park, H. Zhang, Y. Jeong, Y. Kim, M. Noh, S. Park, Y.M. Kim, and Y.G. Kwon. 2019. MicroRNA-148a/b-3p regulates angiogenesis by targeting neuropilin-1 in endothelial cells. Experimental & Molecular Medicine 51: 1–11. Kim, H., Y. Ko, H. Park, H. Zhang, Y. Jeong, Y. Kim, M. Noh, S. Park, Y.M. Kim, and Y.G. Kwon. 2019. MicroRNA-148a/b-3p regulates angiogenesis by targeting neuropilin-1 in endothelial cells. Experimental & Molecular Medicine 51: 1–11.
27.
go back to reference Ma, L., B. Zhai, H. Zhu, W. Li, W. Jiang, L. Lei, S. Zhang, H. Qiao, X. Jiang, and X. Sun. 2019. The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell International 19: 248.CrossRef Ma, L., B. Zhai, H. Zhu, W. Li, W. Jiang, L. Lei, S. Zhang, H. Qiao, X. Jiang, and X. Sun. 2019. The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell International 19: 248.CrossRef
28.
go back to reference Li, M., J. Ning, Z. Li, Q. Fei, C. Zhao, Y. Ge, and L. Wang. 2019. Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338–3p/NRP1 axis. Biomedicine and Pharmacotherapy 118:109259. Li, M., J. Ning, Z. Li, Q. Fei, C. Zhao, Y. Ge, and L. Wang. 2019. Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338–3p/NRP1 axis. Biomedicine and Pharmacotherapy 118:109259.
29.
go back to reference Zhang, L., Y. Chen, C. Li, J. Liu, H. Ren, L. Li, X. Zheng, H. Wang, and Z. Han. 2019. RNA binding protein PUM2 promotes the stemness of breast cancer cells via competitively binding to neuropilin-1 (NRP-1) mRNA with miR-376a. Biomedicine Pharmacotheraphy 114:108772. Zhang, L., Y. Chen, C. Li, J. Liu, H. Ren, L. Li, X. Zheng, H. Wang, and Z. Han. 2019. RNA binding protein PUM2 promotes the stemness of breast cancer cells via competitively binding to neuropilin-1 (NRP-1) mRNA with miR-376a. Biomedicine Pharmacotheraphy 114:108772.
30.
go back to reference Reis, C.R., P.H. Chen, N. Bendris, and S.L. Schmid. 2017. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proceedings of the National Academy of Sciences of the United States of America 114: 504–509.CrossRef Reis, C.R., P.H. Chen, N. Bendris, and S.L. Schmid. 2017. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proceedings of the National Academy of Sciences of the United States of America 114: 504–509.CrossRef
31.
go back to reference Lakoduk, A.M., P. Roudot, M. Mettlen, H.M. Grossman, S.L. Schmid, and P.H. Chen. 2019. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. Journal of Cell Biology 218: 1928–1942.CrossRef Lakoduk, A.M., P. Roudot, M. Mettlen, H.M. Grossman, S.L. Schmid, and P.H. Chen. 2019. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. Journal of Cell Biology 218: 1928–1942.CrossRef
32.
go back to reference Gold, E.S., D.M. Underhill, N.S. Morrissette, J. Guo, M.A. McNiven, and A. Aderem. 1999. Dynamin 2 is required for phagocytosis in macrophages. Journal of Experimental Medicine 190: 1849–1856.CrossRef Gold, E.S., D.M. Underhill, N.S. Morrissette, J. Guo, M.A. McNiven, and A. Aderem. 1999. Dynamin 2 is required for phagocytosis in macrophages. Journal of Experimental Medicine 190: 1849–1856.CrossRef
33.
go back to reference Tse, S.M., W. Furuya, E. Gold, A.D. Schreiber, K. Sandvig, R.D. Inman, and S. Grinstein. 2003. Differential role of actin, clathrin, and dynamin in Fc gamma receptor-mediated endocytosis and phagocytosis. Journal of Biological Chemistry 278: 3331–3338.CrossRef Tse, S.M., W. Furuya, E. Gold, A.D. Schreiber, K. Sandvig, R.D. Inman, and S. Grinstein. 2003. Differential role of actin, clathrin, and dynamin in Fc gamma receptor-mediated endocytosis and phagocytosis. Journal of Biological Chemistry 278: 3331–3338.CrossRef
34.
go back to reference Beutler, B., and E.T. Rietschel. 2003. Innate immune sensing and its roots: The story of endotoxin. Nature Reviews Immunology 3: 169–176.CrossRef Beutler, B., and E.T. Rietschel. 2003. Innate immune sensing and its roots: The story of endotoxin. Nature Reviews Immunology 3: 169–176.CrossRef
35.
go back to reference Caesar, R., V. Tremaroli, P. Kovatcheva-Datchary, P.D. Cani, and F. Backhed. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metabolism 22: 658–668.CrossRef Caesar, R., V. Tremaroli, P. Kovatcheva-Datchary, P.D. Cani, and F. Backhed. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metabolism 22: 658–668.CrossRef
36.
go back to reference Schumann, R.R., S.R. Leong, G.W. Flaggs, P.W. Gray, S.D. Wright, J.C. Mathison, P.S. Tobias, and R.J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein. Science 249: 1429–1431.CrossRef Schumann, R.R., S.R. Leong, G.W. Flaggs, P.W. Gray, S.D. Wright, J.C. Mathison, P.S. Tobias, and R.J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein. Science 249: 1429–1431.CrossRef
37.
go back to reference Kim, J.I., C.J. Lee, M.S. Jin, C.H. Lee, S.G. Paik, H. Lee, and J.O. Lee. 2005. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. Journal of Biological Chemistry 280: 11347–11351.CrossRef Kim, J.I., C.J. Lee, M.S. Jin, C.H. Lee, S.G. Paik, H. Lee, and J.O. Lee. 2005. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. Journal of Biological Chemistry 280: 11347–11351.CrossRef
38.
go back to reference Kawai, T., and S. Akira. 2007. TLR signaling. Seminars in Immunology 19: 24–32.CrossRef Kawai, T., and S. Akira. 2007. TLR signaling. Seminars in Immunology 19: 24–32.CrossRef
39.
go back to reference Ye, X., and S.F. Liu. 2007. Lipopolysaccharide causes Sp1 protein degradation by inducing a unique trypsin-like serine protease in rat lungs. Biochimica et Biophysica Acta 1773: 243–253.CrossRef Ye, X., and S.F. Liu. 2007. Lipopolysaccharide causes Sp1 protein degradation by inducing a unique trypsin-like serine protease in rat lungs. Biochimica et Biophysica Acta 1773: 243–253.CrossRef
40.
go back to reference van den Bosch, M.W.M., E. Palsson-Mcdermott, D.S. Johnson, and L.A.J. O’Neill. 2014. LPS induces the degradation of programmed cell death protein 4 (PDCD4) to release Twist2, activating c-Maf transcription to promote interleukin-10 production. Journal of Biological Chemistry 289: 22980–22990.CrossRef van den Bosch, M.W.M., E. Palsson-Mcdermott, D.S. Johnson, and L.A.J. O’Neill. 2014. LPS induces the degradation of programmed cell death protein 4 (PDCD4) to release Twist2, activating c-Maf transcription to promote interleukin-10 production. Journal of Biological Chemistry 289: 22980–22990.CrossRef
41.
go back to reference Liu, Z., X. Dai, H. Zhu, M. Zhang, and M.H. Zou. 2015. Lipopolysaccharides promote S-nitrosylation and proteasomal degradation of liver kinase B1 (LKB1) in macrophages in vivo. Journal of Biological Chemistry 290: 19011–19017.CrossRef Liu, Z., X. Dai, H. Zhu, M. Zhang, and M.H. Zou. 2015. Lipopolysaccharides promote S-nitrosylation and proteasomal degradation of liver kinase B1 (LKB1) in macrophages in vivo. Journal of Biological Chemistry 290: 19011–19017.CrossRef
Metadata
Title
Lipopolysaccharide Accelerates Neuropilin-1 Protein Degradation by Activating the Large GTPase Dynamin-1 in Macrophages
Authors
Suhua Wu
Yueling Huang
Xinliang Huang
Xiaoyan Dai
Publication date
01-06-2022
Publisher
Springer US
Published in
Inflammation / Issue 3/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01610-z

Other articles of this Issue 3/2022

Inflammation 3/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.