Skip to main content
Top
Published in: Tumor Biology 1/2016

01-01-2016 | Review

Hsp90 regulates autophagy and plays a role in cancer therapy

Authors: Benli Wang, Zongyan Chen, Feifei Yu, Qiao Chen, Yuxi Tian, Shumei Ma, Tiejun Wang, Xiaodong Liu

Published in: Tumor Biology | Issue 1/2016

Login to get access

Abstract

Nowadays, heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, has become the target of antitumor drugs as a result of its close relationship with the occurrence and development, biological behavior, and prognosis of a tumor. Autophagy has attracted big attention recently for its paradoxical roles in cell survival and cell death, especially in the pathogenesis and treatment of cancer. Moreover, it has been verified that Hsp90 plays a role in autophagy via regulating the stability and activity of signaling proteins, and some Hsp90 inhibitors can induce autophagy. However, the underlying mechanisms for these important processes have not been clarified so far. In this study, we focus on the roles of Hsp90 in the regulation of autophagy, such as toll-like receptor (TLR)-mediated autophagy, Ulk1-mediated mitophagy, and chaperone-mediated autophagy (CMA). The roles of Hsp90 inhibitors in cancer therapy will also be elucidated.
Literature
1.
go back to reference Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.CrossRefPubMed Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.CrossRefPubMed
2.
go back to reference Taipale M, Jarosz DF, Lindquist S. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Bio. 2010;11:515–28.CrossRef Taipale M, Jarosz DF, Lindquist S. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Bio. 2010;11:515–28.CrossRef
3.
go back to reference Fearns C, Pan Q, Mathison JC, Chuang TH. Triad3a regulates ubiquitination and proteasomal degradation of rip1 following disruption of HSP90 binding. J Biol Chem. 2006;281:34592–600.CrossRefPubMed Fearns C, Pan Q, Mathison JC, Chuang TH. Triad3a regulates ubiquitination and proteasomal degradation of rip1 following disruption of HSP90 binding. J Biol Chem. 2006;281:34592–600.CrossRefPubMed
4.
go back to reference Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of HSP90. J Mol Med-Jmm. 2004;82:488–99. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of HSP90. J Mol Med-Jmm. 2004;82:488–99.
5.
go back to reference Haupt A, Joberty G, Bantscheff M, Frohlich H, Stehr H, Schweiger MR, et al. Hsp90 inhibition differentially destabilises map kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer. 2012;12:38.CrossRefPubMedPubMedCentral Haupt A, Joberty G, Bantscheff M, Frohlich H, Stehr H, Schweiger MR, et al. Hsp90 inhibition differentially destabilises map kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer. 2012;12:38.CrossRefPubMedPubMedCentral
6.
go back to reference Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treatment Reviews. 2013;39:375–87.CrossRefPubMed Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treatment Reviews. 2013;39:375–87.CrossRefPubMed
7.
go back to reference Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci. 2007;1113:202–16.CrossRefPubMed Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci. 2007;1113:202–16.CrossRefPubMed
8.
go back to reference Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.CrossRefPubMedPubMedCentral Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.CrossRefPubMedPubMedCentral
9.
go back to reference Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.CrossRefPubMed Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.CrossRefPubMed
10.
go back to reference Wang B, Chen L, Ni Z, Dai X, Qin L, Wu Y, et al. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (−)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res. 2014;328:379–87.CrossRefPubMed Wang B, Chen L, Ni Z, Dai X, Qin L, Wu Y, et al. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (−)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res. 2014;328:379–87.CrossRefPubMed
11.
go back to reference Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3:635–7.CrossRefPubMed Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3:635–7.CrossRefPubMed
13.
go back to reference Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562:40–9.CrossRefPubMed Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562:40–9.CrossRefPubMed
14.
go back to reference Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosomal-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone mediated autophagy. J Biol Chem. 2014;289(51):35111–23.CrossRefPubMedPubMedCentral Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosomal-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone mediated autophagy. J Biol Chem. 2014;289(51):35111–23.CrossRefPubMedPubMedCentral
15.
go back to reference Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R, et al. Constraint and adaptation in newt toll-like receptor genes. Genome Biol Evol. 2014;7(1):81–95.CrossRefPubMedPubMedCentral Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R, et al. Constraint and adaptation in newt toll-like receptor genes. Genome Biol Evol. 2014;7(1):81–95.CrossRefPubMedPubMedCentral
16.
go back to reference Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen KM, et al. Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity. 2014;41:762–75.CrossRefPubMed Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen KM, et al. Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity. 2014;41:762–75.CrossRefPubMed
17.
go back to reference Lee MS, Min YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007;76:447–80.CrossRefPubMed Lee MS, Min YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007;76:447–80.CrossRefPubMed
18.
go back to reference Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. International reviews of immunology. 2013;32:116–33.CrossRefPubMed Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. International reviews of immunology. 2013;32:116–33.CrossRefPubMed
19.
go back to reference Huang J, Brumell JH. Autophagy in immunity against intracellular bacteria. Curr Top Microbiol. 2009;335:189–215. Huang J, Brumell JH. Autophagy in immunity against intracellular bacteria. Curr Top Microbiol. 2009;335:189–215.
20.
go back to reference Muenz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009;27:423–49.CrossRef Muenz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009;27:423–49.CrossRef
21.
go back to reference Xu Y, Liu XD, Gong X, Eissa NT. Signaling pathway of autophagy associated with innate immunity. Autophagy. 2008;4:110–2.CrossRefPubMed Xu Y, Liu XD, Gong X, Eissa NT. Signaling pathway of autophagy associated with innate immunity. Autophagy. 2008;4:110–2.CrossRefPubMed
23.
go back to reference Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates toll-like receptor-mediated autophagy. FASEB J. 2011;25:2700–10.CrossRefPubMedPubMedCentral Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates toll-like receptor-mediated autophagy. FASEB J. 2011;25:2700–10.CrossRefPubMedPubMedCentral
24.
go back to reference Young CN, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113–30.CrossRefPubMedPubMedCentral Young CN, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113–30.CrossRefPubMedPubMedCentral
25.
go back to reference Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000;10:524–30.CrossRefPubMed Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000;10:524–30.CrossRefPubMed
26.
go back to reference de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen. 2010;51:391–405.PubMed de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen. 2010;51:391–405.PubMed
27.
go back to reference Bhatia-Kissova I, Camougrand N. Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 2010;10:1023–34.CrossRefPubMed Bhatia-Kissova I, Camougrand N. Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 2010;10:1023–34.CrossRefPubMed
28.
go back to reference Hirota Y, Aoki Y, Kanki T. Mitophagy: selective degradation of mitochondria by autophagy. Seikagaku. 2011;83:126–30.PubMed Hirota Y, Aoki Y, Kanki T. Mitophagy: selective degradation of mitochondria by autophagy. Seikagaku. 2011;83:126–30.PubMed
29.
go back to reference Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell. 2011;43:572–85.CrossRefPubMedPubMedCentral Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell. 2011;43:572–85.CrossRefPubMedPubMedCentral
31.
go back to reference Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell. 2004;116:87–98.CrossRefPubMed Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell. 2004;116:87–98.CrossRefPubMed
32.
go back to reference Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, et al. Mapping the phosphorylation sites of Ulk1. J Proteome Res. 2009;8:5253–63.CrossRefPubMed Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, et al. Mapping the phosphorylation sites of Ulk1. J Proteome Res. 2009;8:5253–63.CrossRefPubMed
33.
go back to reference Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–U170.CrossRefPubMed Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12:119–U170.CrossRefPubMed
34.
go back to reference Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ. Pink1 parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet. 2008;17:602–16.CrossRefPubMed Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ. Pink1 parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet. 2008;17:602–16.CrossRefPubMed
35.
go back to reference Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29:157–71.CrossRefPubMed Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29:157–71.CrossRefPubMed
36.
go back to reference Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112:1493–502.CrossRefPubMedPubMedCentral Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112:1493–502.CrossRefPubMedPubMedCentral
38.
go back to reference Zhang L, Sun Y, Fei M, Tan C, Wu J, Zheng J, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy. 2014;10:1015–35.CrossRefPubMedPubMedCentral Zhang L, Sun Y, Fei M, Tan C, Wu J, Zheng J, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy. 2014;10:1015–35.CrossRefPubMedPubMedCentral
39.
go back to reference Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.CrossRefPubMed Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.CrossRefPubMed
40.
go back to reference Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int. 2012;60:431–42.CrossRefPubMed Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int. 2012;60:431–42.CrossRefPubMed
41.
go back to reference Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003;13:137–45.CrossRefPubMed Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003;13:137–45.CrossRefPubMed
42.
go back to reference Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132–45.CrossRefPubMedPubMedCentral Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132–45.CrossRefPubMedPubMedCentral
43.
go back to reference Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. Embo J. 2007;26:313–24.CrossRefPubMedPubMedCentral Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. Embo J. 2007;26:313–24.CrossRefPubMedPubMedCentral
44.
go back to reference Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–3.CrossRefPubMed Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–3.CrossRefPubMed
45.
go back to reference Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28:5747–63.CrossRefPubMedPubMedCentral Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28:5747–63.CrossRefPubMedPubMedCentral
46.
go back to reference Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323–48.CrossRefPubMed Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006;95:323–48.CrossRefPubMed
47.
go back to reference Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (HSP90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep. 2013;30:1299–323.CrossRefPubMed Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (HSP90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep. 2013;30:1299–323.CrossRefPubMed
48.
go back to reference Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002;8:S55–61.CrossRefPubMed Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002;8:S55–61.CrossRefPubMed
49.
go back to reference Powers MV, Workman P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr-Relat Cancer. 2006;13:S125–35.CrossRefPubMed Powers MV, Workman P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr-Relat Cancer. 2006;13:S125–35.CrossRefPubMed
50.
go back to reference Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H, et al. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 2015;46:47–54.PubMed Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H, et al. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 2015;46:47–54.PubMed
51.
go back to reference Geng M, Wang L, Chen X, Cao R, Li P. The association between chemosensitivity and Pgp, GST-pi and Topo II expression in gastric cancer. Diagn Pathol. 2013;8:198.CrossRefPubMedPubMedCentral Geng M, Wang L, Chen X, Cao R, Li P. The association between chemosensitivity and Pgp, GST-pi and Topo II expression in gastric cancer. Diagn Pathol. 2013;8:198.CrossRefPubMedPubMedCentral
52.
go back to reference Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer. 2014;14:334.CrossRefPubMedPubMedCentral Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer. 2014;14:334.CrossRefPubMedPubMedCentral
53.
go back to reference Dudas J, Schartinger VH, Romani A, Schweigl G, Kordsmeyer K, Marta PI, et al. Cell cycle association and hypoxia regulation of excision repair cross complementation group 1 protein (ERCC1) in tumor cells of head and neck cancer. Tumour Biol. 2014;35:7807–19.CrossRefPubMedPubMedCentral Dudas J, Schartinger VH, Romani A, Schweigl G, Kordsmeyer K, Marta PI, et al. Cell cycle association and hypoxia regulation of excision repair cross complementation group 1 protein (ERCC1) in tumor cells of head and neck cancer. Tumour Biol. 2014;35:7807–19.CrossRefPubMedPubMedCentral
54.
go back to reference Zaanan A, Dalban C, Emile JF, Blons H, Flejou JF, Goumard C, et al. ERCC1, XRCC1 and GSTP1 single nucleotide polymorphisms and survival of patients with colon cancer receiving oxaliplatin-based adjuvant chemotherapy. J Cancer. 2014;5:425–32.CrossRefPubMedPubMedCentral Zaanan A, Dalban C, Emile JF, Blons H, Flejou JF, Goumard C, et al. ERCC1, XRCC1 and GSTP1 single nucleotide polymorphisms and survival of patients with colon cancer receiving oxaliplatin-based adjuvant chemotherapy. J Cancer. 2014;5:425–32.CrossRefPubMedPubMedCentral
55.
go back to reference Zhang Z, Xie Z, Sun G, Yang P, Li J, Yang H, et al. Reversing drug resistance of cisplatin by HSP90 inhibitors in human ovarian cancer cells. Int J Clin Exp Med. 2015;8:6687–701.PubMedPubMedCentral Zhang Z, Xie Z, Sun G, Yang P, Li J, Yang H, et al. Reversing drug resistance of cisplatin by HSP90 inhibitors in human ovarian cancer cells. Int J Clin Exp Med. 2015;8:6687–701.PubMedPubMedCentral
56.
57.
go back to reference Sun Y, Xiao S, Chen J, Wang M, Zheng Z, Song S, et al. Heat shock protein 90 mediates the apoptosis and autophage in nicotinic-mycoepoxydiene-treated HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2015;47:451–8.CrossRef Sun Y, Xiao S, Chen J, Wang M, Zheng Z, Song S, et al. Heat shock protein 90 mediates the apoptosis and autophage in nicotinic-mycoepoxydiene-treated HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2015;47:451–8.CrossRef
Metadata
Title
Hsp90 regulates autophagy and plays a role in cancer therapy
Authors
Benli Wang
Zongyan Chen
Feifei Yu
Qiao Chen
Yuxi Tian
Shumei Ma
Tiejun Wang
Xiaodong Liu
Publication date
01-01-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4142-3

Other articles of this Issue 1/2016

Tumor Biology 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine