Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Research article

How coronal alignment affects distal femoral anatomy: an MRI-based comparison of varus and valgus knees

Authors: Daniel A Cohen, Ali C Gursel, Adrian K Low

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Purpose

In contemporary total knee arthroplasty (TKA), most often, the goal is to align the femoral component to the epicondylar axis (EA). The posterior condylar axis (PCA) is easier to define than the EA, and thus the relationship of PCA to the EA is then used instead to align the femoral component to the EA. However, the relationship of PCA to EA is not constant and has been reported to differ between varus and valgus knees and with increasing deformity. The aim of this large MRI-based study was to evaluate the relationship between PCA and EA with varying coronal deformity especially with increasing valgus deformity.

Methods

EA, PCA, AP (Whiteside’s line) and the mechanical axis were obtained from 474 magnetic resonance imaging (MRI) scans used to create patient-specific instrumentation (PSI) for the Biomet Signature (Warsaw, NJ) system.

Results

The relationship of EA relative to the PCA showed considerable heterogeneity in both varus and valgus groups. In the valgus group, there was statistically greater external rotation (P < 0.05) of the EA from the PCA with a mean of 2.52° (range − 1.9° to 6°) compared to the varus group with a mean of 2.03° (range − 3.9° to 6.9°). This relationship did not significantly change with increasing severity of coronal malalignment.
Externally rotating the femoral cutting guide by 3° from the PCA, 11% (42 of 382) of varus knees would lie outside of ± 3° from EA. In valgus knees, externally rotating the femoral cutting block by 3° or 5° from the PCA, 6.5% (6 of 92) and 33.7% (31 of 92) of knees, respectively, would lie outside of ± 3° from EA.

Conclusion

The relationship of PCA to EA is heterogeneous and is not altered significantly with increasing valgus coronal deformity. External rotation beyond 3° from PCA in valgus knees may lead to significant femoral component malrotation in a large proportion cases.
Literature
1.
go back to reference Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res. 1993;286:40–7. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res. 1993;286:40–7.
2.
go back to reference Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplast. 1998;13:812–5.CrossRef Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplast. 1998;13:812–5.CrossRef
3.
go back to reference Yoshioka Y, Siu D, Cooke TD. The anatomy and functional axes of the femur. J Bone Jt Surg Am. 1987;69:873–80.CrossRef Yoshioka Y, Siu D, Cooke TD. The anatomy and functional axes of the femur. J Bone Jt Surg Am. 1987;69:873–80.CrossRef
4.
go back to reference Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee. 2005;12:293–6.CrossRef Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee. 2005;12:293–6.CrossRef
5.
go back to reference Victor J. Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res. 2009;95:365–72.CrossRef Victor J. Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res. 2009;95:365–72.CrossRef
6.
go back to reference Arima J, Whiteside LA, McCarthy DS, White SE. Femoral rotational alignment, based on the antero-posterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Jt Surg Am. 1995;77:1331–4.CrossRef Arima J, Whiteside LA, McCarthy DS, White SE. Femoral rotational alignment, based on the antero-posterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Jt Surg Am. 1995;77:1331–4.CrossRef
7.
go back to reference Paternostre F, Schwab P-E, Thienpont E. The combined Whiteside’s and posterior condylar line as a reliable reference to describe axial distal femoral anatomy in patient-specific instrument planning. Knee Surg Sports Traumatol Arthrosc. 2014;22:3054–9.CrossRef Paternostre F, Schwab P-E, Thienpont E. The combined Whiteside’s and posterior condylar line as a reliable reference to describe axial distal femoral anatomy in patient-specific instrument planning. Knee Surg Sports Traumatol Arthrosc. 2014;22:3054–9.CrossRef
8.
go back to reference Amaranth JE, Moonapar TR, Sorial RM. Defining distal femoral anatomy for rotational alignment in total knee arthroplasty: a magnetic resonance imaging-based study. ANZ J of Surgery. 2014;84(11):852–5.CrossRef Amaranth JE, Moonapar TR, Sorial RM. Defining distal femoral anatomy for rotational alignment in total knee arthroplasty: a magnetic resonance imaging-based study. ANZ J of Surgery. 2014;84(11):852–5.CrossRef
9.
go back to reference Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, et al. Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res. 2004;22(1):104–9.CrossRef Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, et al. Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res. 2004;22(1):104–9.CrossRef
10.
go back to reference Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:38–45.CrossRef Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:38–45.CrossRef
11.
go back to reference Newbern DG, Faris PM, Ritter MA, Keating EM, Meding JB, Berend ME. A clinical comparison of patellar tracking using the transepicondylar axis and the posterior condylar axis. J Arthroplast. 2006;21:1141–6.CrossRef Newbern DG, Faris PM, Ritter MA, Keating EM, Meding JB, Berend ME. A clinical comparison of patellar tracking using the transepicondylar axis and the posterior condylar axis. J Arthroplast. 2006;21:1141–6.CrossRef
12.
go back to reference Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis. J Arthroplast. 2005;20:1060–7.CrossRef Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis. J Arthroplast. 2005;20:1060–7.CrossRef
13.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.CrossRef Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.CrossRef
14.
go back to reference Hollister AM, Jatana A, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993;290:259–68. Hollister AM, Jatana A, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993;290:259–68.
15.
go back to reference Heyse T, Tibesku C. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2010;21(Issue 1):268–71. Heyse T, Tibesku C. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2010;21(Issue 1):268–71.
16.
go back to reference Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1999;366:155–63.CrossRef Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1999;366:155–63.CrossRef
17.
go back to reference Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res. 1993;287:170–7. Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res. 1993;287:170–7.
18.
go back to reference Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA. The effect of femoral component rotation on the kine- matics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19:1479–87.CrossRef Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA. The effect of femoral component rotation on the kine- matics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19:1479–87.CrossRef
19.
go back to reference Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–53. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–53.
Metadata
Title
How coronal alignment affects distal femoral anatomy: an MRI-based comparison of varus and valgus knees
Authors
Daniel A Cohen
Ali C Gursel
Adrian K Low
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1133-x

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue