Skip to main content
Top
Published in: Brain Structure and Function 8/2016

01-11-2016 | Original Article

Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory

Authors: Bi Zhu, Chuansheng Chen, Elizabeth F. Loftus, Qinghua He, Xuemei Lei, Qi Dong, Chongde Lin

Published in: Brain Structure and Function | Issue 8/2016

Login to get access

Abstract

There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.
Appendix
Available only for authorised users
Literature
go back to reference Baym CL, Gonsalves BD (2010) Comparison of neural activity that leads to true memories, false memories, and forgetting: an fMRI study of the misinformation effect. Cogn Affect Behav Neurosci 10(3):339–348. doi:10.3758/CABN.10.3.339 PubMedCrossRef Baym CL, Gonsalves BD (2010) Comparison of neural activity that leads to true memories, false memories, and forgetting: an fMRI study of the misinformation effect. Cogn Affect Behav Neurosci 10(3):339–348. doi:10.​3758/​CABN.​10.​3.​339 PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300
go back to reference Chantôme M, Perruchet P, Hasboun D, Dormont D, Sahel M, Sourour N, Zouaoui A, Marsault C, Duyme M (1999) Is there a negative correlation between explicit memory and hippocampal volume? Neuroimage 10(5):589–595. doi:10.1006/nimg.1999.0486 PubMedCrossRef Chantôme M, Perruchet P, Hasboun D, Dormont D, Sahel M, Sourour N, Zouaoui A, Marsault C, Duyme M (1999) Is there a negative correlation between explicit memory and hippocampal volume? Neuroimage 10(5):589–595. doi:10.​1006/​nimg.​1999.​0486 PubMedCrossRef
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi:10.1016/j.neuroimage.2006.01.021 PubMedCrossRef Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi:10.​1016/​j.​neuroimage.​2006.​01.​021 PubMedCrossRef
go back to reference Dickey CC, McCarley RW, Voglmaier MM, Niznikiewicz MA, Seidman LJ, Frumin M, Toner S, Demeo S, Shenton ME (2003) A MRI study of fusiform gyrus in schizotypal personality disorder. Schizophr Res 64(1):35–39 (pii S0920996402005297) PubMedPubMedCentralCrossRef Dickey CC, McCarley RW, Voglmaier MM, Niznikiewicz MA, Seidman LJ, Frumin M, Toner S, Demeo S, Shenton ME (2003) A MRI study of fusiform gyrus in schizotypal personality disorder. Schizophr Res 64(1):35–39 (pii S0920996402005297) PubMedPubMedCentralCrossRef
go back to reference Docherty AR, Hagler DJ Jr, Panizzon MS, Neale MC, Eyler LT, Fennema-Notestine C, Franz CE, Jak A, Lyons MJ, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS (2015) Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability? Neuroimage 106:154–160. doi:10.1016/j.neuroimage.2014.11.040 PubMedCrossRef Docherty AR, Hagler DJ Jr, Panizzon MS, Neale MC, Eyler LT, Fennema-Notestine C, Franz CE, Jak A, Lyons MJ, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS (2015) Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability? Neuroimage 106:154–160. doi:10.​1016/​j.​neuroimage.​2014.​11.​040 PubMedCrossRef
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355. doi:10.1016/S0896-6273(02)00569 PubMedCrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355. doi:10.​1016/​S0896-6273(02)00569 PubMedCrossRef
go back to reference Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2(6):568–573. doi:10.1038/9224 PubMedCrossRef Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2(6):568–573. doi:10.​1038/​9224 PubMedCrossRef
go back to reference Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197. doi:10.1038/72140 PubMedCrossRef Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197. doi:10.​1038/​72140 PubMedCrossRef
go back to reference Gimenez M, Junque C, Vendrell P, Caldu X, Narberhaus A, Bargallo N, Falcon C, Botet F, Mercader JM (2005) Hippocampal functional magnetic resonance imaging during a face-name learning task in adolescents with antecedents of prematurity. Neuroimage 25(2):561–569. doi:10.1016/j.neuroimage.2004.10.046 PubMedCrossRef Gimenez M, Junque C, Vendrell P, Caldu X, Narberhaus A, Bargallo N, Falcon C, Botet F, Mercader JM (2005) Hippocampal functional magnetic resonance imaging during a face-name learning task in adolescents with antecedents of prematurity. Neuroimage 25(2):561–569. doi:10.​1016/​j.​neuroimage.​2004.​10.​046 PubMedCrossRef
go back to reference Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57(8):769–775 (pii yoa9447b) PubMedCrossRef Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57(8):769–775 (pii yoa9447b) PubMedCrossRef
go back to reference Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed
go back to reference Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Winocour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 36(9):901–914 (pii S0028393298000177) PubMedCrossRef Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Winocour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 36(9):901–914 (pii S0028393298000177) PubMedCrossRef
go back to reference Mcclelland JL, Mcnaughton BL, Oreilly RC (1995) Why there are complementary learning-systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457. doi:10.1037/0033-295x.102.3.419 PubMedCrossRef Mcclelland JL, Mcnaughton BL, Oreilly RC (1995) Why there are complementary learning-systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457. doi:10.​1037/​0033-295x.​102.​3.​419 PubMedCrossRef
go back to reference Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735. doi:10.1093/cercor/bhp026 PubMedPubMedCentralCrossRef Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735. doi:10.​1093/​cercor/​bhp026 PubMedPubMedCentralCrossRef
go back to reference Sandstrom CK, Krishnan S, Slavin MJ, Tran TT, Doraiswamy PM, Petrella JR (2006) Hippocampal atrophy confounds template-based functional MR imaging measures of hippocampal activation in patients with mild cognitive impairment. AJNR Am J Neuroradiol 27(8):1622–1627 (pii 27/8/1622) PubMed Sandstrom CK, Krishnan S, Slavin MJ, Tran TT, Doraiswamy PM, Petrella JR (2006) Hippocampal atrophy confounds template-based functional MR imaging measures of hippocampal activation in patients with mild cognitive impairment. AJNR Am J Neuroradiol 27(8):1622–1627 (pii 27/8/1622) PubMed
go back to reference Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327. doi:10.1038/nn.3001 CrossRef Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327. doi:10.​1038/​nn.​3001 CrossRef
go back to reference Schnack HG, van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25(6):1608–1617. doi:10.1093/cercor/bht357 PubMedCrossRef Schnack HG, van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25(6):1608–1617. doi:10.​1093/​cercor/​bht357 PubMedCrossRef
go back to reference Simons JS, Koutstaal W, Prince S, Wagner AD, Schacter DL (2003) Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage 19(3):613–626 (pii S105381190300096X) PubMedCrossRef Simons JS, Koutstaal W, Prince S, Wagner AD, Schacter DL (2003) Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage 19(3):613–626 (pii S105381190300096X) PubMedCrossRef
go back to reference Trontel HG, Duffield TC, Bigler ED, Froehlich A, Prigge MB, Nielsen JA, Cooperrider JR, Cariello AN, Travers BG, Anderson JS, Zielinski BA, Alexander A, Lange N, Lainhart JE (2013) Fusiform correlates of facial memory in autism. Behav Sci Basel 3(3):348–371. doi:10.3390/bs3030348 PubMedPubMedCentralCrossRef Trontel HG, Duffield TC, Bigler ED, Froehlich A, Prigge MB, Nielsen JA, Cooperrider JR, Cariello AN, Travers BG, Anderson JS, Zielinski BA, Alexander A, Lange N, Lainhart JE (2013) Fusiform correlates of facial memory in autism. Behav Sci Basel 3(3):348–371. doi:10.​3390/​bs3030348 PubMedPubMedCentralCrossRef
go back to reference Zhu B, Chen C, Loftus EF, He Q, Chen C, Lei X, Lin C, Dong Q (2012) Brief exposure to misinformation can lead to long-term false memories. Appl Cogn Psych 26(2):301–307. doi:10.1002/acp.1825 CrossRef Zhu B, Chen C, Loftus EF, He Q, Chen C, Lei X, Lin C, Dong Q (2012) Brief exposure to misinformation can lead to long-term false memories. Appl Cogn Psych 26(2):301–307. doi:10.​1002/​acp.​1825 CrossRef
Metadata
Title
Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory
Authors
Bi Zhu
Chuansheng Chen
Elizabeth F. Loftus
Qinghua He
Xuemei Lei
Qi Dong
Chongde Lin
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1145-1

Other articles of this Issue 8/2016

Brain Structure and Function 8/2016 Go to the issue