Skip to main content
Top
Published in: Sports Medicine 5/2013

01-05-2013 | Review Article

High-Intensity Interval Training, Solutions to the Programming Puzzle

Part I: Cardiopulmonary Emphasis

Authors: Martin Buchheit, Paul B. Laursen

Published in: Sports Medicine | Issue 5/2013

Login to get access

Abstract

High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their ‘red zone,’ which generally means reaching at least 90 % of their maximal oxygen uptake (\( \dot{V} \)O2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90 % of \( \dot{V} \)O2max (T@\( \dot{V} \)O2max). In addition to T@\( \dot{V} \)O2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@\( \dot{V} \)O2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
Literature
1.
go back to reference Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.PubMedCrossRef Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.PubMedCrossRef
2.
go back to reference Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:32–53. Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:32–53.
3.
go back to reference Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;1:13–31.CrossRef Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;1:13–31.CrossRef
4.
go back to reference Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31:75–90.PubMedCrossRef Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31:75–90.PubMedCrossRef
5.
go back to reference Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53–73.PubMedCrossRef Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53–73.PubMedCrossRef
6.
go back to reference Laursen PB. Interval training for endurance. In: Mujika I, editor. Endurance training: science and practice (pp. 41–50). Vitoria-Gasteiz: Iñigo Mujika; 2012. ISBN 978-84-939970-0-7. Laursen PB. Interval training for endurance. In: Mujika I, editor. Endurance training: science and practice (pp. 41–50). Vitoria-Gasteiz: Iñigo Mujika; 2012. ISBN 978-84-939970-0-7.
7.
go back to reference Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—Part II: recommendations for training. Sports Med. 2011;41:741–56.PubMedCrossRef Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—Part II: recommendations for training. Sports Med. 2011;41:741–56.PubMedCrossRef
8.
go back to reference Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.PubMedCrossRef Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.PubMedCrossRef
9.
go back to reference Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl. 2):11–23.PubMedCrossRef Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl. 2):11–23.PubMedCrossRef
10.
go back to reference Astrand I, Astrand PO, Christensen EH, et al. Intermittent muscular work. Acta Physiol Scand. 1960;48:448–53.PubMedCrossRef Astrand I, Astrand PO, Christensen EH, et al. Intermittent muscular work. Acta Physiol Scand. 1960;48:448–53.PubMedCrossRef
11.
go back to reference Astrand I, Astrand PO, Christensen EH, et al. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand. 1960;48:454–60.PubMedCrossRef Astrand I, Astrand PO, Christensen EH, et al. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand. 1960;48:454–60.PubMedCrossRef
12.
go back to reference Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. (A further contribution to the physiology of intermittent work.). Acta Physiol Scand. 1960;50:269–86.PubMedCrossRef Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. (A further contribution to the physiology of intermittent work.). Acta Physiol Scand. 1960;50:269–86.PubMedCrossRef
13.
go back to reference Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13:528–33.PubMedCrossRef Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13:528–33.PubMedCrossRef
14.
go back to reference Midgley AW, McNaughton LR. Time at or near VO2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46:1–14.PubMed Midgley AW, McNaughton LR. Time at or near VO2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46:1–14.PubMed
15.
go back to reference Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–32.PubMedCrossRef Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–32.PubMedCrossRef
16.
go back to reference Altenburg TM, Degens H, van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103:1752–6.PubMedCrossRef Altenburg TM, Degens H, van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103:1752–6.PubMedCrossRef
17.
go back to reference Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.PubMed Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.PubMed
18.
go back to reference Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007;37:857–80.PubMedCrossRef Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007;37:857–80.PubMedCrossRef
19.
go back to reference Vollaard NB, Constantin-Teodosiu D, Fredriksson K, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106:1479–86.PubMedCrossRef Vollaard NB, Constantin-Teodosiu D, Fredriksson K, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106:1479–86.PubMedCrossRef
20.
go back to reference Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.PubMedCrossRef Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.PubMedCrossRef
21.
go back to reference Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26:94–105.PubMedCrossRef Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26:94–105.PubMedCrossRef
22.
go back to reference Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med. 2000;21:96–101.PubMedCrossRef Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med. 2000;21:96–101.PubMedCrossRef
23.
go back to reference Billat LV, Slawinksi J, Bocquet V, et al. Very short (15 s–15 s) interval-training around the critical velocity allows middle-aged runners to maintain VO2 max for 14 minutes. Int J Sports Med. 2001;22:201–8.PubMedCrossRef Billat LV, Slawinksi J, Bocquet V, et al. Very short (15 s–15 s) interval-training around the critical velocity allows middle-aged runners to maintain VO2 max for 14 minutes. Int J Sports Med. 2001;22:201–8.PubMedCrossRef
24.
go back to reference Faisal A, Beavers KR, Robertson AD, et al. Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol. 2009;106:1553–63.PubMedCrossRef Faisal A, Beavers KR, Robertson AD, et al. Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol. 2009;106:1553–63.PubMedCrossRef
25.
go back to reference Lepretre PM, Lopes P, Koralsztein JP, et al. Fatigue responses in exercise under control of VO2. Int J Sports Med. 2008;29:199–205.PubMedCrossRef Lepretre PM, Lopes P, Koralsztein JP, et al. Fatigue responses in exercise under control of VO2. Int J Sports Med. 2008;29:199–205.PubMedCrossRef
26.
go back to reference Mortensen SP, Damsgaard R, Dawson EA, et al. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586:2621–35.PubMedCrossRef Mortensen SP, Damsgaard R, Dawson EA, et al. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586:2621–35.PubMedCrossRef
27.
go back to reference Richard R, Lonsdorfer-Wolf E, Dufour S, et al. Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol. 2004;93:9–18.PubMedCrossRef Richard R, Lonsdorfer-Wolf E, Dufour S, et al. Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol. 2004;93:9–18.PubMedCrossRef
28.
go back to reference Christmass MA, Dawson B, Arthur PG. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise. Eur J Appl Physiol Occup Physiol. 1999;80:436–47.PubMedCrossRef Christmass MA, Dawson B, Arthur PG. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise. Eur J Appl Physiol Occup Physiol. 1999;80:436–47.PubMedCrossRef
29.
go back to reference Christmass MA, Dawson B, Passeretto P, et al. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur J Appl Physiol. 1999;80:423–35.CrossRef Christmass MA, Dawson B, Passeretto P, et al. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur J Appl Physiol. 1999;80:423–35.CrossRef
30.
go back to reference Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293:H133–41.PubMedCrossRef Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293:H133–41.PubMedCrossRef
31.
go back to reference James DV, Barnes AJ, Lopes P, et al. Heart rate variability: response following a single bout of interval training. Int J Sports Med. 2002;23:247–51.PubMedCrossRef James DV, Barnes AJ, Lopes P, et al. Heart rate variability: response following a single bout of interval training. Int J Sports Med. 2002;23:247–51.PubMedCrossRef
32.
go back to reference Mourot L, Bouhaddi M, Tordi N, et al. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 2004; 92:508–17.PubMedCrossRef Mourot L, Bouhaddi M, Tordi N, et al. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 2004; 92:508–17.PubMedCrossRef
33.
go back to reference Al Haddad H, Laursen PB, Ahmaidi S, et al. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4:435–47. Al Haddad H, Laursen PB, Ahmaidi S, et al. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4:435–47.
34.
go back to reference Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;3:165–80.CrossRef Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;3:165–80.CrossRef
35.
go back to reference Buchheit M. The 30–15 Intermittent Fitness Test: a new intermittent running field test for intermittent sport players—part 1. Approches du Handball. 2005;87:27–34. Buchheit M. The 30–15 Intermittent Fitness Test: a new intermittent running field test for intermittent sport players—part 1. Approches du Handball. 2005;87:27–34.
36.
go back to reference Buchheit M, Al Haddad H, Chivot A, et al. Effect of in- versus out-of-water recovery on repeated swimming sprint performance. Eur J Appl Physiol 2010;108:321–7. Buchheit M, Al Haddad H, Chivot A, et al. Effect of in- versus out-of-water recovery on repeated swimming sprint performance. Eur J Appl Physiol 2010;108:321–7.
37.
go back to reference Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42:587–605.PubMedCrossRef Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42:587–605.PubMedCrossRef
38.
go back to reference Metcalfe RS, Babraj JA, Fawkner SG, et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112:2767–75.PubMedCrossRef Metcalfe RS, Babraj JA, Fawkner SG, et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112:2767–75.PubMedCrossRef
39.
go back to reference Hood MS, Little JP, Tarnopolsky MA, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.PubMedCrossRef Hood MS, Little JP, Tarnopolsky MA, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.PubMedCrossRef
40.
go back to reference Trilk JL, Singhal A, Bigelman KA, et al. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111:1591–7.PubMedCrossRef Trilk JL, Singhal A, Bigelman KA, et al. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111:1591–7.PubMedCrossRef
41.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Assoc, Inc.; 1988. p. 599. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Assoc, Inc.; 1988. p. 599.
42.
go back to reference Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.PubMed Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.PubMed
43.
go back to reference Buchheit M, Laursen PB, Kuhnle J, et al. Game-based training in young elite handball players. Int J Sports Med. 2009;30:251–8.PubMedCrossRef Buchheit M, Laursen PB, Kuhnle J, et al. Game-based training in young elite handball players. Int J Sports Med. 2009;30:251–8.PubMedCrossRef
44.
go back to reference Castagna C, Impellizzeri FM, Chaouachi A, et al. Physiological responses to ball-drills in regional level male basketball players. J Sports Sci. 2011;29:1329–36.PubMedCrossRef Castagna C, Impellizzeri FM, Chaouachi A, et al. Physiological responses to ball-drills in regional level male basketball players. J Sports Sci. 2011;29:1329–36.PubMedCrossRef
45.
go back to reference Fernandez-Fernandez J, Sanz-Rivas D, Sanchez-Muñoz C, et al. Physiological responses to on-court vs running interval training in competitive tennis players. J Sports Sci Med. 2011;10:540–5. Fernandez-Fernandez J, Sanz-Rivas D, Sanchez-Muñoz C, et al. Physiological responses to on-court vs running interval training in competitive tennis players. J Sports Sci Med. 2011;10:540–5.
46.
go back to reference Impellizzeri FM, Marcora SM, Castagna C, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27:483–92.PubMedCrossRef Impellizzeri FM, Marcora SM, Castagna C, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27:483–92.PubMedCrossRef
47.
go back to reference Sheppard JM, Borgeaud R. Skill based conditioning: a perspective from elite volleyball. NSCA hot topic series. 2009; December [online]. Available from URL: http://www.nsca-lift.org. [Accessed 12 Dec 2011]. Sheppard JM, Borgeaud R. Skill based conditioning: a perspective from elite volleyball. NSCA hot topic series. 2009; December [online]. Available from URL: http://​www.​nsca-lift.​org. [Accessed 12 Dec 2011].
48.
go back to reference Gabbett TJ. Skill-based conditioning games as an alternative to traditional conditioning for rugby league players. J Strength Cond Res. 2006;20:309–15.PubMedCrossRef Gabbett TJ. Skill-based conditioning games as an alternative to traditional conditioning for rugby league players. J Strength Cond Res. 2006;20:309–15.PubMedCrossRef
49.
go back to reference Hill-Haas SV, Dawson B, Impellizzeri FM, et al. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41:199–220.PubMedCrossRef Hill-Haas SV, Dawson B, Impellizzeri FM, et al. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41:199–220.PubMedCrossRef
50.
go back to reference Buchheit M, Lepretre PM, Behaegel AL, et al. Cardiorespiratory responses during running and sport-specific exercises in handball players. J Sci Med Sport. 2009;12:399–405.PubMedCrossRef Buchheit M, Lepretre PM, Behaegel AL, et al. Cardiorespiratory responses during running and sport-specific exercises in handball players. J Sci Med Sport. 2009;12:399–405.PubMedCrossRef
51.
go back to reference Castagna C, Belardinelli R, Impellizzeri FM, et al. Cardiovascular responses during recreational 5-a-side indoor-soccer. J Sci Med Sport 2007;10:89–95. Castagna C, Belardinelli R, Impellizzeri FM, et al. Cardiovascular responses during recreational 5-a-side indoor-soccer. J Sci Med Sport 2007;10:89–95.
52.
go back to reference Owen AL, Wong del P, Paul D, Dellal A. Effects of a periodized small-sided game training intervention on physical performance in elite professional soccer. J Strength Cond Res. 2012;26:2748–54. Owen AL, Wong del P, Paul D, Dellal A. Effects of a periodized small-sided game training intervention on physical performance in elite professional soccer. J Strength Cond Res. 2012;26:2748–54.
53.
go back to reference Hill-Haas SV, Coutts AJ, Rowsell GJ, et al. Generic versus small-sided game training in soccer. Int J Sports Med. 2009;30:636–42.PubMedCrossRef Hill-Haas SV, Coutts AJ, Rowsell GJ, et al. Generic versus small-sided game training in soccer. Int J Sports Med. 2009;30:636–42.PubMedCrossRef
54.
go back to reference Dellal A, Lago-Penas C, Wong del P, et al. Effect of the number of ball contacts within bouts of 4 vs. 4 small-sided soccer games. Int J Sports Physiol Perform 2011;6:322–33. Dellal A, Lago-Penas C, Wong del P, et al. Effect of the number of ball contacts within bouts of 4 vs. 4 small-sided soccer games. Int J Sports Physiol Perform 2011;6:322–33.
55.
go back to reference Rampinini E, Impellizzeri F, Castagna C, et al. Factors influencing physiological responses to small-sided soccer games. J Sports Sci. 2007;6:659–66.CrossRef Rampinini E, Impellizzeri F, Castagna C, et al. Factors influencing physiological responses to small-sided soccer games. J Sports Sci. 2007;6:659–66.CrossRef
56.
go back to reference Hill-Haas S, Coutts A, Rowsell G, et al. Variability of acute physiological responses and performance profiles of youth soccer players in small-sided games. J Sci Med Sport. 2008;11:487–90.PubMedCrossRef Hill-Haas S, Coutts A, Rowsell G, et al. Variability of acute physiological responses and performance profiles of youth soccer players in small-sided games. J Sci Med Sport. 2008;11:487–90.PubMedCrossRef
57.
go back to reference Hill-Haas S, Rowsell G, Coutts A, et al. The reproducibility of physiological responses and performance profiles of youth soccer players in small-sided games. Int J Sports Physiol Perform. 2008;3:393–6.PubMed Hill-Haas S, Rowsell G, Coutts A, et al. The reproducibility of physiological responses and performance profiles of youth soccer players in small-sided games. Int J Sports Physiol Perform. 2008;3:393–6.PubMed
58.
go back to reference Daussin FN, Ponsot E, Dufour SP, et al. Improvement of Da-vO2 by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol. 2007;101:377–83.PubMedCrossRef Daussin FN, Ponsot E, Dufour SP, et al. Improvement of Da-vO2 by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol. 2007;101:377–83.PubMedCrossRef
59.
go back to reference Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.PubMedCrossRef Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.PubMedCrossRef
60.
go back to reference Hoff J, Wisloff U, Engen LC, et al. Soccer specific aerobic endurance training. Br J Sports Med. 2002;36:218–21.PubMedCrossRef Hoff J, Wisloff U, Engen LC, et al. Soccer specific aerobic endurance training. Br J Sports Med. 2002;36:218–21.PubMedCrossRef
61.
go back to reference Whipp BJ, Higgenbotham MB, Cobb FC. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol. 1996;81:2674–9.PubMed Whipp BJ, Higgenbotham MB, Cobb FC. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol. 1996;81:2674–9.PubMed
62.
go back to reference Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation 1968;38:VII1–78. Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation 1968;38:VII1–78.
63.
go back to reference Mendez-Villanueva A, Buchheit M, Simpson BM, et al. Match play intensity distribution in youth soccer. Int J Sport Med 2013;34:101–10. Mendez-Villanueva A, Buchheit M, Simpson BM, et al. Match play intensity distribution in youth soccer. Int J Sport Med 2013;34:101–10.
64.
go back to reference Mendez-Villanueva A, Buchheit M, Simpson B, et al. Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? J Strength Cond Res. 2011;25:2634–8.PubMedCrossRef Mendez-Villanueva A, Buchheit M, Simpson B, et al. Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? J Strength Cond Res. 2011;25:2634–8.PubMedCrossRef
65.
go back to reference Di Salvo V, Baron R, Gonzalez-Haro C, et al. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010;28:1489–94.PubMedCrossRef Di Salvo V, Baron R, Gonzalez-Haro C, et al. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010;28:1489–94.PubMedCrossRef
66.
go back to reference Casamichana D, Castellano J, Castagna C. Comparing the physical demands of friendly matches and small-sided games in semiprofessional soccer players. J Strength Cond Res. 2012;26:837–43.PubMed Casamichana D, Castellano J, Castagna C. Comparing the physical demands of friendly matches and small-sided games in semiprofessional soccer players. J Strength Cond Res. 2012;26:837–43.PubMed
67.
go back to reference Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33:517–38.PubMedCrossRef Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33:517–38.PubMedCrossRef
68.
go back to reference Midgley AW, McNaughton LR, Carroll S. Reproducibility of time at or near VO2max during intermittent treadmill running. Int J Sports Med. 2007;28:40–7.PubMedCrossRef Midgley AW, McNaughton LR, Carroll S. Reproducibility of time at or near VO2max during intermittent treadmill running. Int J Sports Med. 2007;28:40–7.PubMedCrossRef
69.
go back to reference Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37:1601–7.PubMedCrossRef Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37:1601–7.PubMedCrossRef
70.
go back to reference Cerretelli P, Di Prampero PE. Kinetics of respiratory gas exchange and cardiac output at the onset of exercise. Scand J Respir Dis 1971;Suppl.:35a–g. Cerretelli P, Di Prampero PE. Kinetics of respiratory gas exchange and cardiac output at the onset of exercise. Scand J Respir Dis 1971;Suppl.:35a–g.
71.
go back to reference Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14:318–25.PubMedCrossRef Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14:318–25.PubMedCrossRef
72.
go back to reference Dishman RK, Patton RW, Smith J, et al. Using perceived exertion to prescribe and monitor exercise training heart rate. Int J Sports Med. 1987;8:208–13.PubMedCrossRef Dishman RK, Patton RW, Smith J, et al. Using perceived exertion to prescribe and monitor exercise training heart rate. Int J Sports Med. 1987;8:208–13.PubMedCrossRef
73.
go back to reference Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106:2060–2.PubMedCrossRef Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106:2060–2.PubMedCrossRef
74.
go back to reference Marcora SM. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. J Appl Physiol 2011;110:1499 (author reply 500). Marcora SM. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. J Appl Physiol 2011;110:1499 (author reply 500).
75.
go back to reference Coutts AJ, Rampinini E, Marcora SM, et al. Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games. J Sci Med Sport. 2009;12:79–84.PubMedCrossRef Coutts AJ, Rampinini E, Marcora SM, et al. Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games. J Sci Med Sport. 2009;12:79–84.PubMedCrossRef
76.
go back to reference Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106:857–64.PubMedCrossRef Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106:857–64.PubMedCrossRef
77.
go back to reference Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52:416–20.PubMedCrossRef Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52:416–20.PubMedCrossRef
78.
go back to reference Garcin M, Fleury A, Mille-Hamard L, et al. Sex-related differences in ratings of perceived exertion and estimated time limit. Int J Sports Med. 2005;26:675–81.PubMedCrossRef Garcin M, Fleury A, Mille-Hamard L, et al. Sex-related differences in ratings of perceived exertion and estimated time limit. Int J Sports Med. 2005;26:675–81.PubMedCrossRef
79.
go back to reference Garcin M, Danel M, Billat V. Perceptual responses in free vs. constant pace exercise. Int J Sports Med. 2008;29:453–9.PubMedCrossRef Garcin M, Danel M, Billat V. Perceptual responses in free vs. constant pace exercise. Int J Sports Med. 2008;29:453–9.PubMedCrossRef
80.
go back to reference Celine CG, Monnier-Benoit P, Groslambert A, et al. The perceived exertion to regulate a training program in young women. J Strength Cond Res. 2011;25:220–4.PubMedCrossRef Celine CG, Monnier-Benoit P, Groslambert A, et al. The perceived exertion to regulate a training program in young women. J Strength Cond Res. 2011;25:220–4.PubMedCrossRef
81.
go back to reference Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development. Sports Med. 2006;36:911–28.PubMedCrossRef Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development. Sports Med. 2006;36:911–28.PubMedCrossRef
82.
go back to reference Garcin M, Coquart JB, Robin S, et al. Prediction of time to exhaustion in competitive cyclists from a perceptually based scale. J Strength Cond Res. 2011;25:1393–9.PubMedCrossRef Garcin M, Coquart JB, Robin S, et al. Prediction of time to exhaustion in competitive cyclists from a perceptually based scale. J Strength Cond Res. 2011;25:1393–9.PubMedCrossRef
83.
go back to reference Garcin M, Mille-Hamard L, Billat V. Influence of aerobic fitness level on measured and estimated perceived exertion during exhausting runs. Int J Sports Med. 2004;25:270–7.PubMedCrossRef Garcin M, Mille-Hamard L, Billat V. Influence of aerobic fitness level on measured and estimated perceived exertion during exhausting runs. Int J Sports Med. 2004;25:270–7.PubMedCrossRef
84.
go back to reference Cabanac ME. Exertion and pleasure from an evolutionary perspective. In: Acevedo EO, Ekkekakis P, editors. Psychobiology of physical activity. Champaign: Human Kinetics; 2006. p. 79–89. Cabanac ME. Exertion and pleasure from an evolutionary perspective. In: Acevedo EO, Ekkekakis P, editors. Psychobiology of physical activity. Champaign: Human Kinetics; 2006. p. 79–89.
85.
go back to reference Volkov NI, Shirkovets EA, Borilkevich VE. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur J Appl Physiol Occup Physiol. 1975;34:121–30.PubMedCrossRef Volkov NI, Shirkovets EA, Borilkevich VE. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur J Appl Physiol Occup Physiol. 1975;34:121–30.PubMedCrossRef
86.
go back to reference Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357–60.PubMed Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357–60.PubMed
87.
go back to reference Leger LA, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5:77–84.PubMed Leger LA, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5:77–84.PubMed
88.
go back to reference Daniels J, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers DM, editor. Sport and elite performers: the 1984 Olympic scientific congress proceedings, vol. 3. Champaign: Human Kinetics; 1984. p. 57–72. Daniels J, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers DM, editor. Sport and elite performers: the 1984 Olympic scientific congress proceedings, vol. 3. Champaign: Human Kinetics; 1984. p. 57–72.
89.
go back to reference Billat LV, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996;22:90–108.PubMedCrossRef Billat LV, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996;22:90–108.PubMedCrossRef
90.
go back to reference Hill DW, Rowell AL. Running velocity at VO2max. Med Sci Sports Exerc. 1996;28:114–9.PubMed Hill DW, Rowell AL. Running velocity at VO2max. Med Sci Sports Exerc. 1996;28:114–9.PubMed
91.
go back to reference di Prampero PE, Atchou G, Bruckner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.PubMedCrossRef di Prampero PE, Atchou G, Bruckner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.PubMedCrossRef
92.
go back to reference Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, et al. The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol. 1990;60:38–43.PubMedCrossRef Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, et al. The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol. 1990;60:38–43.PubMedCrossRef
93.
go back to reference Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at VO2max in subelite runners. Med Sci Sports Exerc. 1994;26:254–7.PubMedCrossRef Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at VO2max in subelite runners. Med Sci Sports Exerc. 1994;26:254–7.PubMedCrossRef
94.
go back to reference Buchheit M. The 30–15 Intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22:365–74.PubMedCrossRef Buchheit M. The 30–15 Intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22:365–74.PubMedCrossRef
95.
go back to reference Dupont G, Akakpo K, Berthoin S. The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res. 2004;18:584–9.PubMed Dupont G, Akakpo K, Berthoin S. The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res. 2004;18:584–9.PubMed
96.
go back to reference Cazorla G, Benezzedine-Boussaidi L. Carré, F. Aptitude aérobie sur le terrain. Pourquoi et comment l’évaluer? Médecins du Sport 2005;73:13–23. Cazorla G, Benezzedine-Boussaidi L. Carré, F. Aptitude aérobie sur le terrain. Pourquoi et comment l’évaluer? Médecins du Sport 2005;73:13–23.
97.
go back to reference Mendez-Villanueva A, Buchheit M, Kuitunen S, et al. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Ped Exerc Sci. 2010;4:497–510. Mendez-Villanueva A, Buchheit M, Kuitunen S, et al. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Ped Exerc Sci. 2010;4:497–510.
98.
go back to reference Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Match running performance and fitness in youth soccer. Int J Sports Med. 2010;31:818–25.PubMedCrossRef Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Match running performance and fitness in youth soccer. Int J Sports Med. 2010;31:818–25.PubMedCrossRef
99.
go back to reference Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc. 1988;20:319–30.PubMedCrossRef Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc. 1988;20:319–30.PubMedCrossRef
100.
go back to reference Rampinini E, Bishop D, Marcora SM, et al. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28:228–35.PubMedCrossRef Rampinini E, Bishop D, Marcora SM, et al. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28:228–35.PubMedCrossRef
101.
go back to reference Berthon P, Fellmann N, Bedu M, et al. A 5-min running field test as a measurement of maximal aerobic velocity. Eur J Appl Physiol Occup Physiol. 1997;3:233–8.CrossRef Berthon P, Fellmann N, Bedu M, et al. A 5-min running field test as a measurement of maximal aerobic velocity. Eur J Appl Physiol Occup Physiol. 1997;3:233–8.CrossRef
102.
go back to reference Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with VO2max. Eur J Appl Physiol Occup Physiol. 1996;72:383–6.PubMedCrossRef Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with VO2max. Eur J Appl Physiol Occup Physiol. 1996;72:383–6.PubMedCrossRef
103.
go back to reference Midgley AW, McNaughton LR, Carroll S. Time at VO2max during intermittent treadmill running: test protocol dependent or methodological artefact? Int J Sports Med. 2007;28:934–9.PubMedCrossRef Midgley AW, McNaughton LR, Carroll S. Time at VO2max during intermittent treadmill running: test protocol dependent or methodological artefact? Int J Sports Med. 2007;28:934–9.PubMedCrossRef
104.
go back to reference Harling SA, Tong RJ, Mickleborough TD. The oxygen uptake response running to exhaustion at peak treadmill speed. Med Sci Sports Exerc. 2003;35:663–8.PubMedCrossRef Harling SA, Tong RJ, Mickleborough TD. The oxygen uptake response running to exhaustion at peak treadmill speed. Med Sci Sports Exerc. 2003;35:663–8.PubMedCrossRef
105.
go back to reference Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.PubMed Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.PubMed
106.
go back to reference Saunders PU, Cox AJ, Hopkins WG, et al. Physiological measures tracking seasonal changes in peak running speed. Int J Sports Physiol Perform. 2010;5:230–8.PubMed Saunders PU, Cox AJ, Hopkins WG, et al. Physiological measures tracking seasonal changes in peak running speed. Int J Sports Physiol Perform. 2010;5:230–8.PubMed
107.
go back to reference Dabonneville M, Berthon P, Vaslin P, et al. The 5 min running field test: test and retest reliability on trained men and women. Eur J Appl Physiol. 2003;88:353–60.PubMedCrossRef Dabonneville M, Berthon P, Vaslin P, et al. The 5 min running field test: test and retest reliability on trained men and women. Eur J Appl Physiol. 2003;88:353–60.PubMedCrossRef
108.
go back to reference Berthon P, Fellmann N. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment. J Sports Med Phys Fitness. 2002;42:257–66.PubMed Berthon P, Fellmann N. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment. J Sports Med Phys Fitness. 2002;42:257–66.PubMed
109.
go back to reference Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance. Sports Med. 2002;32:675–700.PubMedCrossRef Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance. Sports Med. 2002;32:675–700.PubMedCrossRef
110.
go back to reference Blondel N, Berthoin S, Billat V, et al. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22:27–33.PubMedCrossRef Blondel N, Berthoin S, Billat V, et al. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22:27–33.PubMedCrossRef
111.
go back to reference Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol. 2003;95:1955–62.PubMed Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol. 2003;95:1955–62.PubMed
112.
go back to reference Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol. 2005;288:R956–65.PubMedCrossRef Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol. 2005;288:R956–65.PubMedCrossRef
113.
go back to reference Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol. 2006;290:R758–65.PubMedCrossRef Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol. 2006;290:R758–65.PubMedCrossRef
114.
go back to reference Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sport Med. 2012;33:230–9.CrossRef Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sport Med. 2012;33:230–9.CrossRef
115.
go back to reference Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol. 2008;103:411–9.PubMedCrossRef Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol. 2008;103:411–9.PubMedCrossRef
117.
go back to reference Dupont G, Blondel N, Lensel G, et al. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–15.PubMedCrossRef Dupont G, Blondel N, Lensel G, et al. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–15.PubMedCrossRef
118.
go back to reference Buchheit M. 30–15 Intermittent fitness test and repeated sprint ability. Sci Sports. 2008;23:26–8.CrossRef Buchheit M. 30–15 Intermittent fitness test and repeated sprint ability. Sci Sports. 2008;23:26–8.CrossRef
119.
go back to reference Buchheit M, Al Haddad H, Leprêtre PM, et al. Cardiorespiratory and cardiac autonomic responses to 30–15 intermittent fitness test. J Strength Cond Res. 2009;23:93–100.PubMedCrossRef Buchheit M, Al Haddad H, Leprêtre PM, et al. Cardiorespiratory and cardiac autonomic responses to 30–15 intermittent fitness test. J Strength Cond Res. 2009;23:93–100.PubMedCrossRef
120.
go back to reference Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38:37–51.PubMedCrossRef Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38:37–51.PubMedCrossRef
121.
go back to reference Dupont G, Defontaine M, Bosquet L, et al. Yo-Yo intermittent recovery test versus the Universite de Montreal Track Test: relation with a high-intensity intermittent exercise. J Sci Med Sport. 2010;13:146–50.PubMedCrossRef Dupont G, Defontaine M, Bosquet L, et al. Yo-Yo intermittent recovery test versus the Universite de Montreal Track Test: relation with a high-intensity intermittent exercise. J Sci Med Sport. 2010;13:146–50.PubMedCrossRef
122.
go back to reference Buchheit M. The 30–15 intermittent fitness test: reliability and implication for interval training of intermittent sport players [abstract no. 1231]. 10th European Congress of Sport Science. 2005 Jul 13–16; Belgrade. Buchheit M. The 30–15 intermittent fitness test: reliability and implication for interval training of intermittent sport players [abstract no. 1231]. 10th European Congress of Sport Science. 2005 Jul 13–16; Belgrade.
123.
go back to reference Buchheit M, Laursen PB, Millet GP, et al. Predicting intermittent running performance: critical velocity versus endurance index. Int J Sports Med. 2007;29:307–15.PubMedCrossRef Buchheit M, Laursen PB, Millet GP, et al. Predicting intermittent running performance: critical velocity versus endurance index. Int J Sports Med. 2007;29:307–15.PubMedCrossRef
124.
go back to reference Dellal A, Varliette C, Owen A, et al. Small-sided games vs. interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J Strength Cond Res. 2012;26:2712–20. Dellal A, Varliette C, Owen A, et al. Small-sided games vs. interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J Strength Cond Res. 2012;26:2712–20.
125.
go back to reference Mosey T. High intensity interval training in youth soccer players: using fitness testing results practically. J Aust Strength Cond. 2009;17:49–51. Mosey T. High intensity interval training in youth soccer players: using fitness testing results practically. J Aust Strength Cond. 2009;17:49–51.
126.
go back to reference Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295:R236–42.PubMedCrossRef Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295:R236–42.PubMedCrossRef
127.
go back to reference Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max’ during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40:96–102.PubMed Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max’ during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40:96–102.PubMed
128.
go back to reference Millet GP, Candau R, Fattori P, et al. VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol. 2003;28:410–23.PubMedCrossRef Millet GP, Candau R, Fattori P, et al. VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol. 2003;28:410–23.PubMedCrossRef
129.
go back to reference Dupont G, Blondel N, Berthoin S. Time spent at VO2max: a methodological issue. Int J Sports Med. 2003;24:291–7.PubMedCrossRef Dupont G, Blondel N, Berthoin S. Time spent at VO2max: a methodological issue. Int J Sports Med. 2003;24:291–7.PubMedCrossRef
130.
go back to reference Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol Occup Physiol. 1999;80:159–61.PubMedCrossRef Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol Occup Physiol. 1999;80:159–61.PubMedCrossRef
131.
go back to reference Hill DW, Williams CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. Int J Sports Med. 1997;18:325–9.PubMedCrossRef Hill DW, Williams CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. Int J Sports Med. 1997;18:325–9.PubMedCrossRef
132.
go back to reference Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106:38–45.PubMedCrossRef Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106:38–45.PubMedCrossRef
133.
go back to reference Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80:99–107.PubMed Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80:99–107.PubMed
134.
go back to reference Dorado C, Sanchis-Moysi J, Calbet JA. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol. 2004;29:227–44.PubMedCrossRef Dorado C, Sanchis-Moysi J, Calbet JA. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol. 2004;29:227–44.PubMedCrossRef
135.
go back to reference Hill DW, Rowell AL. Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc. 1997;29:113–6.PubMed Hill DW, Rowell AL. Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc. 1997;29:113–6.PubMed
136.
go back to reference Hill DW, Stevens EC. VO2 response profiles in severe intensity exercise. J Sports Med Phys Fitness. 2005;45:239–47.PubMed Hill DW, Stevens EC. VO2 response profiles in severe intensity exercise. J Sports Med Phys Fitness. 2005;45:239–47.PubMed
137.
go back to reference Laursen PB, Shing CM, Jenkins DG. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists: implications for interval training prescription. Res Q Exerc Sport. 2004;75:423–8.PubMedCrossRef Laursen PB, Shing CM, Jenkins DG. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists: implications for interval training prescription. Res Q Exerc Sport. 2004;75:423–8.PubMedCrossRef
138.
go back to reference Billat LV, Renoux J, Pinoteau J, et al. Validation d’une épreuve maximale de temps limiteà VMA (vitesse maximale aérobie) et à VO2max. Sci Sports. 1994;9:3–12.CrossRef Billat LV, Renoux J, Pinoteau J, et al. Validation d’une épreuve maximale de temps limiteà VMA (vitesse maximale aérobie) et à VO2max. Sci Sports. 1994;9:3–12.CrossRef
139.
go back to reference Hughson RL, O’Leary DD, Betik AC, et al. Kinetics of oxygen uptake at the onset of exercise near or above peak oxygen uptake. J Appl Physiol. 2000;88:1812–9.PubMed Hughson RL, O’Leary DD, Betik AC, et al. Kinetics of oxygen uptake at the onset of exercise near or above peak oxygen uptake. J Appl Physiol. 2000;88:1812–9.PubMed
140.
go back to reference Hill DW, Halcomb JN, Stevens EC. Oxygen uptake kinetics during severe intensity running and cycling. Eur J Appl Physiol. 2003;89:612–8.PubMedCrossRef Hill DW, Halcomb JN, Stevens EC. Oxygen uptake kinetics during severe intensity running and cycling. Eur J Appl Physiol. 2003;89:612–8.PubMedCrossRef
141.
go back to reference Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci. 1998;16:733–8.PubMedCrossRef Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci. 1998;16:733–8.PubMedCrossRef
142.
go back to reference Buchheit M, Abbiss C, Peiffer JJ, et al. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;112(2):767–79.PubMedCrossRef Buchheit M, Abbiss C, Peiffer JJ, et al. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;112(2):767–79.PubMedCrossRef
143.
go back to reference Powers SK, Dodd S, Beadle RE. Oxygen uptake kinetics in trained athletes differing in VO2max. Eur J Appl Physiol Occup Physiol. 1985;54:306–8.PubMedCrossRef Powers SK, Dodd S, Beadle RE. Oxygen uptake kinetics in trained athletes differing in VO2max. Eur J Appl Physiol Occup Physiol. 1985;54:306–8.PubMedCrossRef
144.
go back to reference Buchheit M, Laursen PB, Ahmaidi S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. J Appl Physiol. 2009;107:460–70.PubMedCrossRef Buchheit M, Laursen PB, Ahmaidi S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. J Appl Physiol. 2009;107:460–70.PubMedCrossRef
145.
go back to reference Barstow TJ, Jones AM, Nguyen PH, et al. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol. 1996;81:1642–50.PubMed Barstow TJ, Jones AM, Nguyen PH, et al. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol. 1996;81:1642–50.PubMed
146.
go back to reference Pringle JS, Doust JH, Carter H, et al. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol. 2003;89:289–300.PubMedCrossRef Pringle JS, Doust JH, Carter H, et al. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol. 2003;89:289–300.PubMedCrossRef
147.
go back to reference Kilding AE, Winter EM, Fysh M. A comparison of pulmonary oxygen uptake kinetics in middle- and long-distance runners. Int J Sports Med. 2006;27:419–26.PubMedCrossRef Kilding AE, Winter EM, Fysh M. A comparison of pulmonary oxygen uptake kinetics in middle- and long-distance runners. Int J Sports Med. 2006;27:419–26.PubMedCrossRef
148.
go back to reference Billat V, Petit B, Koralsztein J. Calibration de la durée des répétition d’une séance d’interval training à la vitesse associée à VO2max en référence au temps limite continu: effet sur les réponses physiologiques et la distance parcourue. Sci Mot. 1996;28:13–20. Billat V, Petit B, Koralsztein J. Calibration de la durée des répétition d’une séance d’interval training à la vitesse associée à VO2max en référence au temps limite continu: effet sur les réponses physiologiques et la distance parcourue. Sci Mot. 1996;28:13–20.
149.
go back to reference Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc. 1999;31:892–6.PubMedCrossRef Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc. 1999;31:892–6.PubMedCrossRef
150.
go back to reference Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337–43.PubMedCrossRef Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337–43.PubMedCrossRef
151.
go back to reference Buchheit M. High-intensity interval training: how to best shape the puzzle piece. International congress of the Australian Strength and conditioning Association, November 9–11th 2012, Brisbane, QS, Australia. Buchheit M. High-intensity interval training: how to best shape the puzzle piece. International congress of the Australian Strength and conditioning Association, November 9–11th 2012, Brisbane, QS, Australia.
152.
go back to reference Muller EA. The physiological basis of rest pauses in heavy work. Q J Exp Physiol Cogn Med Sci. 1953;38:205–15.PubMed Muller EA. The physiological basis of rest pauses in heavy work. Q J Exp Physiol Cogn Med Sci. 1953;38:205–15.PubMed
153.
go back to reference Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol. 1975;39:932–6.PubMed Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol. 1975;39:932–6.PubMed
154.
go back to reference Ahmaidi S, Granier P, Taoutaou Z, et al. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc. 1996;28:450–6.PubMedCrossRef Ahmaidi S, Granier P, Taoutaou Z, et al. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc. 1996;28:450–6.PubMedCrossRef
155.
go back to reference Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38:1165–74.PubMedCrossRef Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38:1165–74.PubMedCrossRef
156.
go back to reference Gorostiaga EM, Asiain X, Izquierdo M, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24:1138–49.PubMedCrossRef Gorostiaga EM, Asiain X, Izquierdo M, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24:1138–49.PubMedCrossRef
157.
go back to reference Weltman A, Stamford BA, Fulco C. Recovery from maximal effort exercise: lactate disappearance and subsequent performance. J Appl Physiol. 1979;47:677–82.PubMed Weltman A, Stamford BA, Fulco C. Recovery from maximal effort exercise: lactate disappearance and subsequent performance. J Appl Physiol. 1979;47:677–82.PubMed
158.
go back to reference Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30:418–25.PubMedCrossRef Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30:418–25.PubMedCrossRef
159.
go back to reference Dupont G, Moalla W, Matran R, et al. Effect of short recovery intensities on the performance during two Wingate tests. Med Sci Sports Exerc. 2007;39:1170–6.PubMedCrossRef Dupont G, Moalla W, Matran R, et al. Effect of short recovery intensities on the performance during two Wingate tests. Med Sci Sports Exerc. 2007;39:1170–6.PubMedCrossRef
160.
go back to reference Spencer M, Bishop D, Dawson B, et al. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38:1492–9.PubMedCrossRef Spencer M, Bishop D, Dawson B, et al. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38:1492–9.PubMedCrossRef
161.
go back to reference Bogdanis GC, Nevill ME, Lakomy HK, et al. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol. 1996;74:461–9.PubMedCrossRef Bogdanis GC, Nevill ME, Lakomy HK, et al. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol. 1996;74:461–9.PubMedCrossRef
162.
go back to reference Connolly DAJ, Brennan KM, Lauzon CD. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise. J Sports Sci Med 2003:47–51. Connolly DAJ, Brennan KM, Lauzon CD. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise. J Sports Sci Med 2003:47–51.
163.
go back to reference Spencer M, Dawson B, Goodman C, et al. Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol. 2008;103:545–52.PubMedCrossRef Spencer M, Dawson B, Goodman C, et al. Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol. 2008;103:545–52.PubMedCrossRef
164.
go back to reference Thevenet D, Leclair E, Tardieu-Berger M, et al. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J Sports Sci. 2008;26:1313–21.PubMedCrossRef Thevenet D, Leclair E, Tardieu-Berger M, et al. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J Sports Sci. 2008;26:1313–21.PubMedCrossRef
165.
go back to reference Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc. 1989;21:563–8.PubMed Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc. 1989;21:563–8.PubMed
166.
go back to reference Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol Occup Physiol. 1987;56:516–21.PubMedCrossRef Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol Occup Physiol. 1987;56:516–21.PubMedCrossRef
167.
go back to reference Wu HC, Hsu WH, Chen T. Complete recovery time after exhaustion in high-intensity work. Ergonomics. 2005;48:668–79.PubMedCrossRef Wu HC, Hsu WH, Chen T. Complete recovery time after exhaustion in high-intensity work. Ergonomics. 2005;48:668–79.PubMedCrossRef
168.
go back to reference Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69:407–18.PubMed Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69:407–18.PubMed
169.
go back to reference Billat V. L’entraînement en pleine nature: conseils de préparation aux sports outdoor. Paris: De Boeck; 2005. Billat V. L’entraînement en pleine nature: conseils de préparation aux sports outdoor. Paris: De Boeck; 2005.
170.
go back to reference Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286–91.PubMedCrossRef Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286–91.PubMedCrossRef
171.
go back to reference Staab JS, Agnew JW, Siconolfi SF. Metabolic and performance responses to uphill and downhill running in distance runners. Med Sci Sports Exerc. 1992;24:124–7.PubMed Staab JS, Agnew JW, Siconolfi SF. Metabolic and performance responses to uphill and downhill running in distance runners. Med Sci Sports Exerc. 1992;24:124–7.PubMed
172.
go back to reference Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol. 2002;88:163–9.PubMedCrossRef Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol. 2002;88:163–9.PubMedCrossRef
173.
go back to reference Slawinski J, Dorel S, Hug F, et al. Elite long sprint running: a comparison between incline and level training sessions. Med Sci Sports Exerc. 2008;40:1155–62.PubMedCrossRef Slawinski J, Dorel S, Hug F, et al. Elite long sprint running: a comparison between incline and level training sessions. Med Sci Sports Exerc. 2008;40:1155–62.PubMedCrossRef
174.
go back to reference Gajer B, Hanon C, Lehenaff D, et al. Analyse comparée de différentes séances de développement de VO2max. In: Expertise et sport de haut niveau: actes des Entretiens de l’INSEP Novembre 2002. Paris: Insep, 2003. Gajer B, Hanon C, Lehenaff D, et al. Analyse comparée de différentes séances de développement de VO2max. In: Expertise et sport de haut niveau: actes des Entretiens de l’INSEP Novembre 2002. Paris: Insep, 2003.
175.
go back to reference Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.PubMed Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.PubMed
176.
go back to reference Seiler S, Jøranson K, Olesen BV, et al. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.PubMedCrossRef Seiler S, Jøranson K, Olesen BV, et al. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.PubMedCrossRef
177.
go back to reference Millet GP, Libicz S, Borrani F, et al. Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol. 2003;90:50–7.PubMedCrossRef Millet GP, Libicz S, Borrani F, et al. Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol. 2003;90:50–7.PubMedCrossRef
178.
go back to reference Tardieu-Berger M, Thevenet D, Zouhal H, et al. Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol. 2004;93:145–52.PubMedCrossRef Tardieu-Berger M, Thevenet D, Zouhal H, et al. Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol. 2004;93:145–52.PubMedCrossRef
179.
go back to reference Thevenet D, Tardieu M, Zouhal H, et al. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 2007;102:19–26.PubMedCrossRef Thevenet D, Tardieu M, Zouhal H, et al. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 2007;102:19–26.PubMedCrossRef
180.
go back to reference Buchheit M, Millet GP, Parisy A, et al. Supramaximal training and post-exercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc. 2008;40:362–71.PubMedCrossRef Buchheit M, Millet GP, Parisy A, et al. Supramaximal training and post-exercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc. 2008;40:362–71.PubMedCrossRef
182.
go back to reference Dellal A, Keller D, Carling C, et al. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24:3219–26.PubMedCrossRef Dellal A, Keller D, Carling C, et al. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24:3219–26.PubMedCrossRef
183.
go back to reference Belfry GR, Paterson DH, Murias JM, et al. The effects of short recovery duration on VO(2) and muscle deoxygenation during intermittent exercise. Eur J Appl Physiol. 2012;112(5):1907–15.PubMedCrossRef Belfry GR, Paterson DH, Murias JM, et al. The effects of short recovery duration on VO(2) and muscle deoxygenation during intermittent exercise. Eur J Appl Physiol. 2012;112(5):1907–15.PubMedCrossRef
184.
go back to reference Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–41.PubMedCrossRef Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–41.PubMedCrossRef
185.
go back to reference Rozenek R, Funato K, Kubo J, et al. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res. 2007;21:188–92.PubMed Rozenek R, Funato K, Kubo J, et al. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res. 2007;21:188–92.PubMed
186.
go back to reference Wakefield BR, Glaister M. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res. 2009;23:2548–54.PubMedCrossRef Wakefield BR, Glaister M. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res. 2009;23:2548–54.PubMedCrossRef
187.
go back to reference Dupont G, Moalla W, Guinhouya C, et al. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc. 2004;36:302–8.PubMedCrossRef Dupont G, Moalla W, Guinhouya C, et al. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc. 2004;36:302–8.PubMedCrossRef
188.
go back to reference Thevenet D, Tardieu-Berger M, Berthoin S, et al. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133–42.PubMedCrossRef Thevenet D, Tardieu-Berger M, Berthoin S, et al. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133–42.PubMedCrossRef
189.
go back to reference Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89:548–54.PubMedCrossRef Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89:548–54.PubMedCrossRef
190.
go back to reference Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004;29(Suppl):S3–16.PubMedCrossRef Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004;29(Suppl):S3–16.PubMedCrossRef
191.
go back to reference Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41:673–94.PubMedCrossRef Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41:673–94.PubMedCrossRef
192.
go back to reference Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol. 2005;95:27–34.PubMedCrossRef Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol. 2005;95:27–34.PubMedCrossRef
193.
go back to reference Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol. 2010;101:1007–18.CrossRef Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol. 2010;101:1007–18.CrossRef
194.
go back to reference Buchheit M, Bishop D, Haydar B, et al. Physiological responses to shuttle repeated-sprint running. Int J Sport Med. 2010;31:402–9.CrossRef Buchheit M, Bishop D, Haydar B, et al. Physiological responses to shuttle repeated-sprint running. Int J Sport Med. 2010;31:402–9.CrossRef
195.
go back to reference Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol. 1992;65:144–9.PubMedCrossRef Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol. 1992;65:144–9.PubMedCrossRef
196.
go back to reference Bravo DF, Impellizzeri FM, Rampinini E, et al. Sprint vs. interval training in football. Int J Sports Med. 2008;29:668–74.CrossRef Bravo DF, Impellizzeri FM, Rampinini E, et al. Sprint vs. interval training in football. Int J Sports Med. 2008;29:668–74.CrossRef
197.
go back to reference Buchheit M, Mendez-Villanueva A, Delhomel G, et al. Improving repeated sprint ability in young elite soccer players: repeated sprints vs. explosive strength training. J Strength Cond Res. 2010;24:2715–22.PubMedCrossRef Buchheit M, Mendez-Villanueva A, Delhomel G, et al. Improving repeated sprint ability in young elite soccer players: repeated sprints vs. explosive strength training. J Strength Cond Res. 2010;24:2715–22.PubMedCrossRef
198.
go back to reference Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 1997;29:390–5.PubMedCrossRef Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 1997;29:390–5.PubMedCrossRef
199.
go back to reference Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80:876–84.PubMed Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80:876–84.PubMed
200.
go back to reference Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277:E890–900.PubMed Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277:E890–900.PubMed
201.
go back to reference Lepretre PM, Koralsztein JP, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.PubMedCrossRef Lepretre PM, Koralsztein JP, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.PubMedCrossRef
202.
go back to reference McCole SD, Davis AM, Fueger PT. Is there a disassociation of maximal oxygen consumption and maximal cardiac output? Med Sci Sports Exerc. 2001;33:1265–9.PubMedCrossRef McCole SD, Davis AM, Fueger PT. Is there a disassociation of maximal oxygen consumption and maximal cardiac output? Med Sci Sports Exerc. 2001;33:1265–9.PubMedCrossRef
203.
go back to reference Gt Cooper. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med. 1997;48:13–23.CrossRef Gt Cooper. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med. 1997;48:13–23.CrossRef
204.
go back to reference Gonzalez-Alonso J, Calbet JA. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107:824–30.PubMedCrossRef Gonzalez-Alonso J, Calbet JA. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107:824–30.PubMedCrossRef
205.
go back to reference Gonzalez-Alonso J. Point: stroke volume does/does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:275–6; discussion 9–80. Gonzalez-Alonso J. Point: stroke volume does/does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:275–6; discussion 9–80.
206.
go back to reference Warburton DE, Gledhill N. Counterpoint: Stroke volume does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:276–8; discussion 8–9. Warburton DE, Gledhill N. Counterpoint: Stroke volume does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:276–8; discussion 8–9.
207.
go back to reference Coyle EF, Trinity JD. The stroke volume response during or throughout 4-8 min of constant-power exercise that elicits VO2max. J Appl Physiol 2008;104:282–3; author reply 4–5. Coyle EF, Trinity JD. The stroke volume response during or throughout 4-8 min of constant-power exercise that elicits VO2max. J Appl Physiol 2008;104:282–3; author reply 4–5.
208.
go back to reference Lepretre PM, Foster C, Koralsztein JP, et al. Heart rate deflection point as a strategy to defend stroke volume during incremental exercise. J Appl Physiol. 2005;98:1660–5.PubMedCrossRef Lepretre PM, Foster C, Koralsztein JP, et al. Heart rate deflection point as a strategy to defend stroke volume during incremental exercise. J Appl Physiol. 2005;98:1660–5.PubMedCrossRef
209.
go back to reference Cumming GR. Stroke volume during recovery from supine bicycle exercise. J Appl Physiol. 1972;32:575–8.PubMed Cumming GR. Stroke volume during recovery from supine bicycle exercise. J Appl Physiol. 1972;32:575–8.PubMed
210.
go back to reference Astrand PO, Rodhal K, editors. Textbook of work physiology: physiological bases of exercise. Series in Health Education, Physical Education, and Recreation. Lower Mitcham (SA). Human Kinetics. New York: MacGraw-Hill, 2003. p. 649. Astrand PO, Rodhal K, editors. Textbook of work physiology: physiological bases of exercise. Series in Health Education, Physical Education, and Recreation. Lower Mitcham (SA). Human Kinetics. New York: MacGraw-Hill, 2003. p. 649.
211.
go back to reference Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness. Orlando (FL): Saunders College Publishing; 1974. Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness. Orlando (FL): Saunders College Publishing; 1974.
212.
go back to reference Takahashi T, Okada A, Saitoh T, et al. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol. 2000;81:233–9.PubMedCrossRef Takahashi T, Okada A, Saitoh T, et al. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol. 2000;81:233–9.PubMedCrossRef
213.
go back to reference Charloux A, Lonsdorfer-Wolf E, Richard R, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol. 2000;82:313–20.PubMedCrossRef Charloux A, Lonsdorfer-Wolf E, Richard R, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol. 2000;82:313–20.PubMedCrossRef
214.
go back to reference Richard R, Lonsdorfer-Wolf E, Charloux A, et al. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol. 2001;85:202–7.PubMedCrossRef Richard R, Lonsdorfer-Wolf E, Charloux A, et al. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol. 2001;85:202–7.PubMedCrossRef
215.
go back to reference Fontana P, Betschon K, Boutellier U, et al. Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men. Eur J Appl Physiol. 2011;111:155–8.PubMedCrossRef Fontana P, Betschon K, Boutellier U, et al. Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men. Eur J Appl Physiol. 2011;111:155–8.PubMedCrossRef
216.
go back to reference Helgerud J, Engen LC, Wisloff U, et al. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33:1925–31.PubMedCrossRef Helgerud J, Engen LC, Wisloff U, et al. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33:1925–31.PubMedCrossRef
217.
go back to reference Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42:327–33.PubMedCrossRef Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42:327–33.PubMedCrossRef
218.
go back to reference Castagna C, Impellizzeri FM, Chaouachi A, et al. Effect of training intensity distribution on aerobic fitness variables in elite soccer players: a case study. J Strength Cond Res. 2011;25:66–71.PubMedCrossRef Castagna C, Impellizzeri FM, Chaouachi A, et al. Effect of training intensity distribution on aerobic fitness variables in elite soccer players: a case study. J Strength Cond Res. 2011;25:66–71.PubMedCrossRef
219.
go back to reference Mooney M, O’Brien B, Cormack S, et al. The relationship between physical capacity and match performance in elite Australian football: a mediation approach. J Sci Med Sport. 2011;14:447–52.PubMedCrossRef Mooney M, O’Brien B, Cormack S, et al. The relationship between physical capacity and match performance in elite Australian football: a mediation approach. J Sci Med Sport. 2011;14:447–52.PubMedCrossRef
220.
go back to reference Buchheit M, Simpson BM, Mendez-Villaneuva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J Sport Med. 2012;34:40–8.CrossRef Buchheit M, Simpson BM, Mendez-Villaneuva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J Sport Med. 2012;34:40–8.CrossRef
221.
go back to reference Buchheit M, Rabbani A. 30–15 Intermittent Fitness Test vs. Yo-Yo Intermittent Recovery Test Level 1: relationship and sensitivity to training. Int J Sports Physiol Perform; In press. Buchheit M, Rabbani A. 30–15 Intermittent Fitness Test vs. Yo-Yo Intermittent Recovery Test Level 1: relationship and sensitivity to training. Int J Sports Physiol Perform; In press.
222.
go back to reference Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Pediatr Exerc Sci. 2009;21:130–47. Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Pediatr Exerc Sci. 2009;21:130–47.
Metadata
Title
High-Intensity Interval Training, Solutions to the Programming Puzzle
Part I: Cardiopulmonary Emphasis
Authors
Martin Buchheit
Paul B. Laursen
Publication date
01-05-2013
Publisher
Springer International Publishing AG
Published in
Sports Medicine / Issue 5/2013
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0029-x

Other articles of this Issue 5/2013

Sports Medicine 5/2013 Go to the issue