Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2010

Open Access 01-12-2010 | Methodology

High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function

Authors: Claudia Fallini, Gary J Bassell, Wilfried Rossoll

Published in: Molecular Neurodegeneration | Issue 1/2010

Login to get access

Abstract

Background

Cultured spinal motor neurons are a valuable tool to study basic mechanisms of development, axon growth and pathfinding, and, importantly, to analyze the pathomechanisms underlying motor neuron diseases. However, the application of this cell culture model is limited by the lack of efficient gene transfer techniques which are available for other neurons. To address this problem, we have established magnetofection as a novel method for the simple and efficient transfection of mouse embryonic motor neurons. This technique allows for the study of the effects of gene expression and silencing on the development and survival of motor neurons.

Results

We found that magnetofection, a novel transfection technology based on the delivery of DNA-coated magnetic nanobeads, can be used to transfect primary motor neurons. Therefore, in order to use this method as a new tool for studying the localization and transport of axonal proteins, we optimized conditions and determined parameters for efficient transfection rates of >45% while minimizing toxic effects on survival and morphology. To demonstrate the potential of this method, we have used transfection with plasmids encoding fluorescent fusion-proteins to show for the first time that the spinal muscular atrophy-disease protein Smn is actively transported along axons of live primary motor neurons, supporting an axon-specific role for Smn that is different from its canonical function in mRNA splicing. We were also able to show the suitability of magnetofection for gene knockdown with shRNA-based constructs by significantly reducing Smn levels in both cell bodies and axons, opening new opportunities for the study of the function of axonal proteins in motor neurons.

Conclusions

In this study we have established an optimized magnetofection protocol as a novel transfection method for primary motor neurons that is simple, efficient and non-toxic. We anticipate that this novel approach will have a broad applicability in the study of motor neuron development, axonal trafficking, and molecular mechanisms of motor neuron diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dion PA, Daoud H, Rouleau GA: Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet. 2009, 10: 769-782. 10.1038/nrg2680.PubMedCrossRef Dion PA, Daoud H, Rouleau GA: Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet. 2009, 10: 769-782. 10.1038/nrg2680.PubMedCrossRef
2.
go back to reference Beck M, Karch C, Wiese S, Sendtner M: Motoneuron cell death and neurotrophic factors: basic models for development of new therapeutic strategies in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001, 2 (Suppl 1): S55-68. 10.1080/146608201300079454.PubMedCrossRef Beck M, Karch C, Wiese S, Sendtner M: Motoneuron cell death and neurotrophic factors: basic models for development of new therapeutic strategies in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001, 2 (Suppl 1): S55-68. 10.1080/146608201300079454.PubMedCrossRef
3.
go back to reference Sendtner M, Pei G, Beck M, Schweizer U, Wiese S: Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res. 2000, 301: 71-84. 10.1007/s004410000217.PubMedCrossRef Sendtner M, Pei G, Beck M, Schweizer U, Wiese S: Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res. 2000, 301: 71-84. 10.1007/s004410000217.PubMedCrossRef
4.
go back to reference Cisterni C, Henderson CE, Aebischer P, Pettmann B, Deglon N: Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motoneurons transduced wit lentiviral vectors. J Neurochem. 2000, 74: 1820-1828. 10.1046/j.1471-4159.2000.0741820.x.PubMedCrossRef Cisterni C, Henderson CE, Aebischer P, Pettmann B, Deglon N: Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motoneurons transduced wit lentiviral vectors. J Neurochem. 2000, 74: 1820-1828. 10.1046/j.1471-4159.2000.0741820.x.PubMedCrossRef
5.
go back to reference Bender FL, Fischer M, Funk N, Orel N, Rethwilm A, Sendtner M: High-efficiency gene transfer into cultured embryonic motoneurons using recombinant lentiviruses. Histochem Cell Biol. 2007, 127: 439-448. 10.1007/s00418-006-0247-5.PubMedCrossRef Bender FL, Fischer M, Funk N, Orel N, Rethwilm A, Sendtner M: High-efficiency gene transfer into cultured embryonic motoneurons using recombinant lentiviruses. Histochem Cell Biol. 2007, 127: 439-448. 10.1007/s00418-006-0247-5.PubMedCrossRef
6.
go back to reference Wirth B, Brichta L, Hahnen E: Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol. 2006, 13: 121-131. 10.1016/j.spen.2006.06.008.PubMedCrossRef Wirth B, Brichta L, Hahnen E: Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol. 2006, 13: 121-131. 10.1016/j.spen.2006.06.008.PubMedCrossRef
7.
go back to reference Burghes AH, Beattie CE: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?. Nat Rev Neurosci. 2009, 10: 597-609. 10.1038/nrn2670.PubMedPubMedCentralCrossRef Burghes AH, Beattie CE: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?. Nat Rev Neurosci. 2009, 10: 597-609. 10.1038/nrn2670.PubMedPubMedCentralCrossRef
8.
go back to reference Rossoll W, Bassell GJ: Spinal Muscular Atrophy and a Model for Survival of Motor Neuron Protein Function in Axonal Ribonucleoprotein Complexes. Results Probl Cell Differ. 2009 Rossoll W, Bassell GJ: Spinal Muscular Atrophy and a Model for Survival of Motor Neuron Protein Function in Axonal Ribonucleoprotein Complexes. Results Probl Cell Differ. 2009
9.
go back to reference Chari A, Paknia E, Fischer U: The role of RNP biogenesis in spinal muscular atrophy. Curr Opin Cell Biol. 2009 Chari A, Paknia E, Fischer U: The role of RNP biogenesis in spinal muscular atrophy. Curr Opin Cell Biol. 2009
10.
go back to reference Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ: Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci. 2003, 23: 6627-6637.PubMed Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ: Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci. 2003, 23: 6627-6637.PubMed
11.
go back to reference Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M: Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol. 2003, 163: 801-812. 10.1083/jcb.200304128.PubMedPubMedCentralCrossRef Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M: Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol. 2003, 163: 801-812. 10.1083/jcb.200304128.PubMedPubMedCentralCrossRef
12.
go back to reference McWhorter ML, Monani UR, Burghes AH, Beattie CE: Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol. 2003, 162: 919-931. 10.1083/jcb.200303168.PubMedPubMedCentralCrossRef McWhorter ML, Monani UR, Burghes AH, Beattie CE: Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol. 2003, 162: 919-931. 10.1083/jcb.200303168.PubMedPubMedCentralCrossRef
13.
go back to reference Monani UR: Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron. 2005, 48: 885-895. 10.1016/j.neuron.2005.12.001.PubMedCrossRef Monani UR: Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron. 2005, 48: 885-895. 10.1016/j.neuron.2005.12.001.PubMedCrossRef
14.
go back to reference Jablonka S, Rossoll W, Schrank B, Sendtner M: The role of SMN in spinal muscular atrophy. J Neurol. 2000, 247: I37-42. 10.1007/s004150050555.PubMedCrossRef Jablonka S, Rossoll W, Schrank B, Sendtner M: The role of SMN in spinal muscular atrophy. J Neurol. 2000, 247: I37-42. 10.1007/s004150050555.PubMedCrossRef
15.
go back to reference Briese M, Esmaeili B, Sattelle DB: Is spinal muscular atrophy the result of defects in motor neuron processes?. Bioessays. 2005, 27: 946-957. 10.1002/bies.20283.PubMedCrossRef Briese M, Esmaeili B, Sattelle DB: Is spinal muscular atrophy the result of defects in motor neuron processes?. Bioessays. 2005, 27: 946-957. 10.1002/bies.20283.PubMedCrossRef
16.
go back to reference Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, Rosenecker J: Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med. 2004, 6: 923-936. 10.1002/jgm.577.PubMedCrossRef Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, Rosenecker J: Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med. 2004, 6: 923-936. 10.1002/jgm.577.PubMedCrossRef
17.
go back to reference Buerli T, Pellegrino C, Baer K, Lardi-Studler B, Chudotvorova I, Fritschy JM, Medina I, Fuhrer C: Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc. 2007, 2: 3090-3101. 10.1038/nprot.2007.445.PubMedCrossRef Buerli T, Pellegrino C, Baer K, Lardi-Studler B, Chudotvorova I, Fritschy JM, Medina I, Fuhrer C: Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc. 2007, 2: 3090-3101. 10.1038/nprot.2007.445.PubMedCrossRef
18.
go back to reference Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R: High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc. 2007, 2: 1692-1704. 10.1038/nprot.2007.226.PubMedCrossRef Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R: High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc. 2007, 2: 1692-1704. 10.1038/nprot.2007.226.PubMedCrossRef
19.
go back to reference Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC: Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004, 33: 95-103. 10.1016/j.ymeth.2003.11.023.PubMedCrossRef Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC: Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004, 33: 95-103. 10.1016/j.ymeth.2003.11.023.PubMedCrossRef
20.
go back to reference Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A: Polyethylenimine-mediated DNA transfection of peripheral and central neurons in primary culture: probing Ca2+ channel structure and function with antisense oligonucleotides. Mol Cell Neurosci. 1996, 7: 239-246. 10.1006/mcne.1996.0018.PubMedCrossRef Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A: Polyethylenimine-mediated DNA transfection of peripheral and central neurons in primary culture: probing Ca2+ channel structure and function with antisense oligonucleotides. Mol Cell Neurosci. 1996, 7: 239-246. 10.1006/mcne.1996.0018.PubMedCrossRef
21.
go back to reference Kohrmann M, Haubensak W, Hemraj I, Kaether C, Lessmann VJ, Kiebler MA: Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J Neurosci Res. 1999, 58: 831-835. 10.1002/(SICI)1097-4547(19991215)58:6<831::AID-JNR10>3.0.CO;2-M.PubMedCrossRef Kohrmann M, Haubensak W, Hemraj I, Kaether C, Lessmann VJ, Kiebler MA: Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J Neurosci Res. 1999, 58: 831-835. 10.1002/(SICI)1097-4547(19991215)58:6<831::AID-JNR10>3.0.CO;2-M.PubMedCrossRef
22.
go back to reference Plank C, Anton M, Rudolph C, Rosenecker J, Krotz F: Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther. 2003, 3: 745-758. 10.1517/14712598.3.5.745.PubMedCrossRef Plank C, Anton M, Rudolph C, Rosenecker J, Krotz F: Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther. 2003, 3: 745-758. 10.1517/14712598.3.5.745.PubMedCrossRef
23.
go back to reference Lee CH, Kim EY, Jeon K, Tae JC, Lee KS, Kim YO, Jeong MY, Yun CW, Jeong DK, Cho SK, et al: Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev. 2008, 17: 133-141. 10.1089/scd.2007.0064.PubMedCrossRef Lee CH, Kim EY, Jeon K, Tae JC, Lee KS, Kim YO, Jeong MY, Yun CW, Jeong DK, Cho SK, et al: Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev. 2008, 17: 133-141. 10.1089/scd.2007.0064.PubMedCrossRef
24.
go back to reference Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C: Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol. 2009, 487: 111-146.PubMed Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C: Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol. 2009, 487: 111-146.PubMed
25.
go back to reference Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, et al: Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008, 5: 605-607. 10.1038/nmeth.1220.PubMedPubMedCentralCrossRef Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, et al: Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008, 5: 605-607. 10.1038/nmeth.1220.PubMedPubMedCentralCrossRef
26.
go back to reference Walker PS, Hengge UR, Udey MC, Aksentijevich I, Vogel JC: Viral interference during simultaneous transduction with two independent helper-free retroviral vectors. Hum Gene Ther. 1996, 7: 1131-1138. 10.1089/hum.1996.7.9-1131.PubMedCrossRef Walker PS, Hengge UR, Udey MC, Aksentijevich I, Vogel JC: Viral interference during simultaneous transduction with two independent helper-free retroviral vectors. Hum Gene Ther. 1996, 7: 1131-1138. 10.1089/hum.1996.7.9-1131.PubMedCrossRef
27.
go back to reference Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22: 1567-1572. 10.1038/nbt1037.PubMedCrossRef Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22: 1567-1572. 10.1038/nbt1037.PubMedCrossRef
28.
go back to reference Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE: Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry. 2007, 46: 5904-5910. 10.1021/bi700199g.PubMedCrossRef Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE: Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry. 2007, 46: 5904-5910. 10.1021/bi700199g.PubMedCrossRef
29.
go back to reference Zhang HL, Singer RH, Bassell GJ: Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol. 1999, 147: 59-70. 10.1083/jcb.147.1.59.PubMedPubMedCentralCrossRef Zhang HL, Singer RH, Bassell GJ: Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol. 1999, 147: 59-70. 10.1083/jcb.147.1.59.PubMedPubMedCentralCrossRef
30.
go back to reference Oprea GE, Krober S, McWhorter ML, Rossoll W, Muller S, Krawczak M, Bassell GJ, Beattie CE, Wirth B: Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science. 2008, 320: 524-527. 10.1126/science.1155085.PubMedCrossRef Oprea GE, Krober S, McWhorter ML, Rossoll W, Muller S, Krawczak M, Bassell GJ, Beattie CE, Wirth B: Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science. 2008, 320: 524-527. 10.1126/science.1155085.PubMedCrossRef
31.
go back to reference Arce V, Garces A, de Bovis B, Filippi P, Henderson C, Pettmann B, deLapeyriere O: Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique. J Neurosci Res. 1999, 55: 119-126. 10.1002/(SICI)1097-4547(19990101)55:1<119::AID-JNR13>3.0.CO;2-6.PubMedCrossRef Arce V, Garces A, de Bovis B, Filippi P, Henderson C, Pettmann B, deLapeyriere O: Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique. J Neurosci Res. 1999, 55: 119-126. 10.1002/(SICI)1097-4547(19990101)55:1<119::AID-JNR13>3.0.CO;2-6.PubMedCrossRef
32.
go back to reference Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002, 296: 913-916. 10.1126/science.1068539.PubMedCrossRef Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002, 296: 913-916. 10.1126/science.1068539.PubMedCrossRef
Metadata
Title
High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function
Authors
Claudia Fallini
Gary J Bassell
Wilfried Rossoll
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2010
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-5-17

Other articles of this Issue 1/2010

Molecular Neurodegeneration 1/2010 Go to the issue