Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Hepatocellular Carcinoma | Review

Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways

Authors: Jafar Ai, Neda Ketabchi, Javad Verdi, Nematollah Gheibi, Hossein Khadem Haghighian, Maria Kavianpour

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.
Literature
1.
go back to reference Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.PubMedCrossRef Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.PubMedCrossRef
2.
go back to reference El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.PubMedCrossRef El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.PubMedCrossRef
3.
go back to reference Janevska D, Chaloska-Ivanova V, Janevski VJ. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci. 2015;3(4):732.PubMedPubMedCentralCrossRef Janevska D, Chaloska-Ivanova V, Janevski VJ. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci. 2015;3(4):732.PubMedPubMedCentralCrossRef
4.
go back to reference Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, et al. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: in vitro inhibition of carcinogenesis. World J Gastroenterol. 2019;25(5):567.PubMedPubMedCentralCrossRef Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, et al. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: in vitro inhibition of carcinogenesis. World J Gastroenterol. 2019;25(5):567.PubMedPubMedCentralCrossRef
5.
go back to reference Crissien AM, Frenette CJG. Current management of hepatocellular carcinoma. Hepatology. 2014;10(3):153. Crissien AM, Frenette CJG. Current management of hepatocellular carcinoma. Hepatology. 2014;10(3):153.
6.
go back to reference El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–81.PubMedCrossRef El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–81.PubMedCrossRef
7.
go back to reference Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol. 2018;233(5):3831–45.PubMedCrossRef Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol. 2018;233(5):3831–45.PubMedCrossRef
8.
go back to reference Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem cells Int. 2016;2016:5646384.PubMedCrossRef Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem cells Int. 2016;2016:5646384.PubMedCrossRef
11.
go back to reference Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef
13.
go back to reference Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways. Hepatology (Baltimore, MD). 2012;55(3):833.CrossRef Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways. Hepatology (Baltimore, MD). 2012;55(3):833.CrossRef
14.
go back to reference Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2):823.PubMedPubMedCentralCrossRef Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2):823.PubMedPubMedCentralCrossRef
15.
go back to reference Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, et al. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res. 2014;34(4):1709–13.PubMedPubMedCentral Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, et al. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res. 2014;34(4):1709–13.PubMedPubMedCentral
16.
go back to reference Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.PubMedPubMedCentralCrossRef Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.PubMedPubMedCentralCrossRef
17.
go back to reference Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. Asian Pac J Cancer Prev. 2018;19(6):1627–31.PubMedPubMedCentral Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. Asian Pac J Cancer Prev. 2018;19(6):1627–31.PubMedPubMedCentral
18.
go back to reference Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016;5:879.CrossRef Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016;5:879.CrossRef
19.
go back to reference Wands JR, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4.PubMedCrossRef Wands JR, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4.PubMedCrossRef
20.
21.
22.
go back to reference Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol. 2006;26(22):8418–26.PubMedPubMedCentralCrossRef Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol. 2006;26(22):8418–26.PubMedPubMedCentralCrossRef
23.
go back to reference Byun T, Karimi M, Marsh J, Milovanovic T, Lin F, Holcombe R. Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol. 2005;58(5):515–9.PubMedPubMedCentralCrossRef Byun T, Karimi M, Marsh J, Milovanovic T, Lin F, Holcombe R. Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol. 2005;58(5):515–9.PubMedPubMedCentralCrossRef
24.
go back to reference Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills W, Benbrook D, et al. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene. 2012;31(22):2725.PubMedCrossRef Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills W, Benbrook D, et al. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene. 2012;31(22):2725.PubMedCrossRef
25.
go back to reference Qiao L, Xu Z, Zhao T, Ye L, Zhang X. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008;269(1):67–77.PubMedCrossRef Qiao L, Xu Z, Zhao T, Ye L, Zhang X. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008;269(1):67–77.PubMedCrossRef
27.
go back to reference Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett. 2010;584(17):3826–30.PubMedCrossRef Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett. 2010;584(17):3826–30.PubMedCrossRef
28.
go back to reference Ozturk MB, Li Y, Tergaonkar V. Current insights to regulation and role of telomerase in human diseases. Antioxidants. 2017;6(1):17.PubMedCentralCrossRef Ozturk MB, Li Y, Tergaonkar V. Current insights to regulation and role of telomerase in human diseases. Antioxidants. 2017;6(1):17.PubMedCentralCrossRef
29.
go back to reference Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.PubMedCrossRef Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.PubMedCrossRef
30.
go back to reference Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67(22):10831–9.PubMedCrossRef Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67(22):10831–9.PubMedCrossRef
31.
go back to reference Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127(4):1110–22.PubMedCrossRef Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127(4):1110–22.PubMedCrossRef
32.
go back to reference Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, et al. Expression and prognostic roles of β-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res. 2002;8(2):450–6.PubMed Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, et al. Expression and prognostic roles of β-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res. 2002;8(2):450–6.PubMed
33.
go back to reference Dahmani R, Just P-A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2011;35(11):709–13.PubMedCrossRef Dahmani R, Just P-A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2011;35(11):709–13.PubMedCrossRef
34.
go back to reference Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014;61(1):S79–90.PubMedPubMedCentralCrossRef Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014;61(1):S79–90.PubMedPubMedCentralCrossRef
35.
go back to reference Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, et al. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, et al. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef
36.
go back to reference Maeda S. NF-κB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract. 2010;2010:286–97.CrossRef Maeda S. NF-κB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract. 2010;2010:286–97.CrossRef
38.
go back to reference Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27(48):6228.PubMedCrossRef Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27(48):6228.PubMedCrossRef
39.
go back to reference Yen C-J, Lin Y-J, Yen C-S, Tsai H-W, Tsai T-F, Chang K-Y, et al. Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE. 2012;7(7):e41931.PubMedPubMedCentralCrossRef Yen C-J, Lin Y-J, Yen C-S, Tsai H-W, Tsai T-F, Chang K-Y, et al. Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE. 2012;7(7):e41931.PubMedPubMedCentralCrossRef
40.
go back to reference Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, et al. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal. 2018;11(543):eaaq1077.PubMedCrossRefPubMedCentral Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, et al. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal. 2018;11(543):eaaq1077.PubMedCrossRefPubMedCentral
41.
go back to reference Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209.PubMedCrossRef Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209.PubMedCrossRef
42.
go back to reference Botos I, Segal DM, Davies DRJS. The structural biology of Toll-like receptors. J Anim Sci Technol. 2011;19(4):447–59. Botos I, Segal DM, Davies DRJS. The structural biology of Toll-like receptors. J Anim Sci Technol. 2011;19(4):447–59.
43.
go back to reference Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;2018:1–12. Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;2018:1–12.
44.
go back to reference Vollmer S, Strickson S, Zhang T, Gray N, Lee K, Rao V, et al. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;2017:0097. Vollmer S, Strickson S, Zhang T, Gray N, Lee K, Rao V, et al. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;2017:0097.
45.
go back to reference Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination and degradation of MyD88 adapter-like (MAL). J Biol Chem. 2010;109:098137. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination and degradation of MyD88 adapter-like (MAL). J Biol Chem. 2010;109:098137.
46.
go back to reference Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harbor Persp Biol. 2010;2(3):a000158. Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harbor Persp Biol. 2010;2(3):a000158.
47.
go back to reference Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018;154(6):1778–90.PubMedCrossRef Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018;154(6):1778–90.PubMedCrossRef
48.
go back to reference Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–72.PubMedPubMedCentralCrossRef Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–72.PubMedPubMedCentralCrossRef
49.
go back to reference Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.PubMedCrossRef Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.PubMedCrossRef
50.
go back to reference Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142.PubMedCrossRef Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142.PubMedCrossRef
51.
go back to reference Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127(5):1513–24.PubMedCrossRef Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127(5):1513–24.PubMedCrossRef
52.
go back to reference Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590(3):447–58.PubMedCrossRef Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590(3):447–58.PubMedCrossRef
53.
go back to reference Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324.PubMedCrossRef Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324.PubMedCrossRef
54.
go back to reference Douhara A, Moriya K, Yoshiji H, Noguchi R, Namisaki T, Kitade M, et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep. 2015;11(3):1693–700.PubMedCrossRef Douhara A, Moriya K, Yoshiji H, Noguchi R, Namisaki T, Kitade M, et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep. 2015;11(3):1693–700.PubMedCrossRef
55.
go back to reference Zhu T, Wenjuan T, Tan Z, Liu L. Effects of inhibited expression of IRF3 in LPS-stimulated Kupffer cells on the activation of signal transduction pathways. Chin J Microbiol Immunol. 2015;8:587–94. Zhu T, Wenjuan T, Tan Z, Liu L. Effects of inhibited expression of IRF3 in LPS-stimulated Kupffer cells on the activation of signal transduction pathways. Chin J Microbiol Immunol. 2015;8:587–94.
56.
go back to reference Yu L-X, Ling Y, Wang H-Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Prec Oncol. 2018;2(1):6.CrossRef Yu L-X, Ling Y, Wang H-Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Prec Oncol. 2018;2(1):6.CrossRef
57.
go back to reference Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48(1):322–35.PubMedCrossRef Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48(1):322–35.PubMedCrossRef
58.
go back to reference Trucco LD, Roselli E, Araya P, Nuñez NG, Mena HA, Bocco JL, et al. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma. PLoS ONE. 2017;12(6):e0179897.PubMedPubMedCentralCrossRef Trucco LD, Roselli E, Araya P, Nuñez NG, Mena HA, Bocco JL, et al. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma. PLoS ONE. 2017;12(6):e0179897.PubMedPubMedCentralCrossRef
59.
60.
go back to reference Stein I, Bramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.PubMedCrossRef Stein I, Bramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.PubMedCrossRef
61.
go back to reference Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Investig. 2005;115(10):2625–32.PubMedCrossRefPubMedCentral Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Investig. 2005;115(10):2625–32.PubMedCrossRefPubMedCentral
62.
go back to reference Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130(5):918–31.PubMedPubMedCentralCrossRef Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130(5):918–31.PubMedPubMedCentralCrossRef
64.
go back to reference Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BBA Gene Regul Mech. 2010;1799(10):775–87. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BBA Gene Regul Mech. 2010;1799(10):775–87.
65.
68.
go back to reference Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, et al. High expression levels of IKKα and IKKβ are necessary for the malignant properties of liver cancer. Int J Cancer. 2010;126(5):1263–74.PubMedCrossRef Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, et al. High expression levels of IKKα and IKKβ are necessary for the malignant properties of liver cancer. Int J Cancer. 2010;126(5):1263–74.PubMedCrossRef
69.
go back to reference Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-κB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells 1. Acta Pharmacol Sin. 2008;29(3):333–40.PubMedCrossRef Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-κB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells 1. Acta Pharmacol Sin. 2008;29(3):333–40.PubMedCrossRef
71.
go back to reference Eaton GJ Jr. Apoptosis signal-regulating kinase 1 modulates endochondral bone formation and osteoarthritis progression. Philadelphia: Thomas Jefferson University; 2015. Eaton GJ Jr. Apoptosis signal-regulating kinase 1 modulates endochondral bone formation and osteoarthritis progression. Philadelphia: Thomas Jefferson University; 2015.
72.
73.
go back to reference Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143(2):307–20.PubMedCrossRef Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143(2):307–20.PubMedCrossRef
74.
go back to reference Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–42.PubMedCrossRef Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–42.PubMedCrossRef
75.
go back to reference Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23(4):576.PubMedCrossRef Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23(4):576.PubMedCrossRef
76.
go back to reference Tong C, Yin Z, Song Z, Dockendorff A, Huang C, Mariadason J, et al. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am J Pathol. 2007;171(1):297–303.PubMedPubMedCentralCrossRef Tong C, Yin Z, Song Z, Dockendorff A, Huang C, Mariadason J, et al. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am J Pathol. 2007;171(1):297–303.PubMedPubMedCentralCrossRef
77.
go back to reference Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BBA Mol Cell Res. 2007;1773(8):1161–76. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BBA Mol Cell Res. 2007;1773(8):1161–76.
78.
go back to reference Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radical Biol Med. 2014;72:267–84.CrossRef Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radical Biol Med. 2014;72:267–84.CrossRef
79.
80.
go back to reference Suhail M, Abdel-Hafiz H, Ali A, Fatima K, Damanhouri GA, Azhar E, et al. Potential mechanisms of hepatitis B virus induced liver injury. WJG. 2014;20(35):12462.PubMedCrossRefPubMedCentral Suhail M, Abdel-Hafiz H, Ali A, Fatima K, Damanhouri GA, Azhar E, et al. Potential mechanisms of hepatitis B virus induced liver injury. WJG. 2014;20(35):12462.PubMedCrossRefPubMedCentral
81.
go back to reference Chen F, Beezhold K, Castranova V. JNK1, a potential therapeutic target for hepatocellular carcinoma. BBA Rev Cancer. 2009;1796(2):242–51. Chen F, Beezhold K, Castranova V. JNK1, a potential therapeutic target for hepatocellular carcinoma. BBA Rev Cancer. 2009;1796(2):242–51.
82.
go back to reference Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604.PubMedCrossRef Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604.PubMedCrossRef
83.
go back to reference Min L, He B, Hui L, editors. Mitogen-activated protein kinases in hepatocellular carcinoma development. Seminars in cancer biology. New York: Elsevier; 2011. Min L, He B, Hui L, editors. Mitogen-activated protein kinases in hepatocellular carcinoma development. Seminars in cancer biology. New York: Elsevier; 2011.
84.
go back to reference Park GB, Choi Y, Kim YS, Lee H-K, Kim D, Hur DY. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44(3):977–85.PubMedCrossRef Park GB, Choi Y, Kim YS, Lee H-K, Kim D, Hur DY. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44(3):977–85.PubMedCrossRef
86.
go back to reference Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.PubMedPubMedCentralCrossRef Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.PubMedPubMedCentralCrossRef
87.
go back to reference Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18.PubMedPubMedCentralCrossRef Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18.PubMedPubMedCentralCrossRef
88.
go back to reference Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.PubMedCrossRef Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.PubMedCrossRef
89.
go back to reference Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.PubMedCrossRef Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.PubMedCrossRef
90.
go back to reference Davis JR, Tapon NJD. Hippo signalling during development. Development. 2019;146(18):167106.CrossRef Davis JR, Tapon NJD. Hippo signalling during development. Development. 2019;146(18):167106.CrossRef
93.
go back to reference Johnson RL. Hippo signaling and epithelial cell plasticity in mammalian liver development, homeostasis, injury and disease. Sci China Life Sci. 2019;26:1–8. Johnson RL. Hippo signaling and epithelial cell plasticity in mammalian liver development, homeostasis, injury and disease. Sci China Life Sci. 2019;26:1–8.
95.
go back to reference Zheng T, Wang J, Jiang H, Liu LJ. Hippo signaling in oval cells and hepatocarcinogenesis. Cancer Lett. 2011;302(2):91–9.PubMedCrossRef Zheng T, Wang J, Jiang H, Liu LJ. Hippo signaling in oval cells and hepatocarcinogenesis. Cancer Lett. 2011;302(2):91–9.PubMedCrossRef
96.
go back to reference Jie L, Fan W, Weiqi D, Yingqun Z, Ling X, Miao S, et al. The hippo-yes association protein pathway in liver cancer. Gastroenterol Res Pract. 2013;2013:187070.PubMedPubMedCentralCrossRef Jie L, Fan W, Weiqi D, Yingqun Z, Ling X, Miao S, et al. The hippo-yes association protein pathway in liver cancer. Gastroenterol Res Pract. 2013;2013:187070.PubMedPubMedCentralCrossRef
97.
go back to reference Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.PubMedPubMedCentralCrossRef Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.PubMedPubMedCentralCrossRef
98.
go back to reference Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115(19):4576–85.PubMedCrossRef Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115(19):4576–85.PubMedCrossRef
99.
go back to reference Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.PubMedCrossRef Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.PubMedCrossRef
100.
go back to reference Xiao H, Jiang N, Zhou B, Liu Q, Du CJ. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci. 2015;106(2):151–9.PubMedPubMedCentralCrossRef Xiao H, Jiang N, Zhou B, Liu Q, Du CJ. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci. 2015;106(2):151–9.PubMedPubMedCentralCrossRef
104.
go back to reference Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem. 2010;343(1–2):155–62.PubMedCrossRef Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem. 2010;343(1–2):155–62.PubMedCrossRef
105.
go back to reference El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Rashed LA, et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011;30(1):49.PubMedPubMedCentralCrossRef El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Rashed LA, et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011;30(1):49.PubMedPubMedCentralCrossRef
106.
go back to reference Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8(43):75756.PubMedPubMedCentral Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8(43):75756.PubMedPubMedCentral
107.
go back to reference Gomes CMF. The dual role of mesenchymal stem cells in tumor progression. Stem Cell Res Therapy. 2013;4(2):42.CrossRef Gomes CMF. The dual role of mesenchymal stem cells in tumor progression. Stem Cell Res Therapy. 2013;4(2):42.CrossRef
108.
go back to reference Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133(2):473–85.PubMedCrossRef Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133(2):473–85.PubMedCrossRef
109.
go back to reference Zhang Y, Wang J, Wu D, Li M, Zhao F, Ren M, et al. il-21-secreting hUcMscs combined with mir-200c inhibit tumor growth and metastasis via repression of Wnt/β-catenin signaling and epithelial–mesenchymal transition in epithelial ovarian cancer. OncoTargets Therapy. 2018;11:2037.PubMedCrossRefPubMedCentral Zhang Y, Wang J, Wu D, Li M, Zhao F, Ren M, et al. il-21-secreting hUcMscs combined with mir-200c inhibit tumor growth and metastasis via repression of Wnt/β-catenin signaling and epithelial–mesenchymal transition in epithelial ovarian cancer. OncoTargets Therapy. 2018;11:2037.PubMedCrossRefPubMedCentral
110.
go back to reference Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, et al. Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMedCrossRef Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, et al. Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMedCrossRef
111.
go back to reference Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol. 2003;75(3):248–55.PubMedCrossRef Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol. 2003;75(3):248–55.PubMedCrossRef
112.
go back to reference Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.PubMedPubMedCentralCrossRef Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.PubMedPubMedCentralCrossRef
113.
go back to reference Lu Y, Yuan Y, Wang X, Wei L, Chen Y, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7(2):245–51.PubMedCrossRef Lu Y, Yuan Y, Wang X, Wei L, Chen Y, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7(2):245–51.PubMedCrossRef
114.
go back to reference Wang ML, Pan CM, Chiou SH, Chen WH, Chang HY, Lee OKS, et al. Oncostatin M modulates the mesenchymal–epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 2012;72(22):6051–64.PubMedCrossRef Wang ML, Pan CM, Chiou SH, Chen WH, Chang HY, Lee OKS, et al. Oncostatin M modulates the mesenchymal–epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 2012;72(22):6051–64.PubMedCrossRef
115.
go back to reference Ryu H, Oh J-E, Rhee K-J, Baik SK, Kim J, Kang SJ, et al. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett. 2014;352(2):220–7.PubMedCrossRef Ryu H, Oh J-E, Rhee K-J, Baik SK, Kim J, Kang SJ, et al. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett. 2014;352(2):220–7.PubMedCrossRef
116.
go back to reference Du J, Zhou L, Chen X, Yan S, Ke M, Lu X, et al. IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol. 2012;44(8):1305–14.PubMedCrossRef Du J, Zhou L, Chen X, Yan S, Ke M, Lu X, et al. IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol. 2012;44(8):1305–14.PubMedCrossRef
118.
go back to reference Loebinger M, Sage E, Davies D. Janes SJBjoc. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. 2010;103(11):1692. Loebinger M, Sage E, Davies D. Janes SJBjoc. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. 2010;103(11):1692.
119.
go back to reference Zhao D, Hou L, Pan M, Hua J, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells cultured in 3D system on hepatoma cells HepG2. Appl Biochem Biotechnol. 2018;184(1):212–27.PubMedCrossRef Zhao D, Hou L, Pan M, Hua J, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells cultured in 3D system on hepatoma cells HepG2. Appl Biochem Biotechnol. 2018;184(1):212–27.PubMedCrossRef
120.
go back to reference Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRef Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRef
121.
go back to reference Waterman RS, Tomchuck SL, Henkle SL, Betancourt AMJ. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4):e10088.PubMedPubMedCentralCrossRef Waterman RS, Tomchuck SL, Henkle SL, Betancourt AMJ. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4):e10088.PubMedPubMedCentralCrossRef
122.
go back to reference Waterman RS, Henkle SL, Betancourt AMJ. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE. 2012;7(9):e45590.PubMedPubMedCentralCrossRef Waterman RS, Henkle SL, Betancourt AMJ. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE. 2012;7(9):e45590.PubMedPubMedCentralCrossRef
123.
go back to reference Gwendal L. Recent discoveries concerning the tumor-mesenchymal stem cell interactions. BBA Rev Cancer. 2016;1866(2):290–9. Gwendal L. Recent discoveries concerning the tumor-mesenchymal stem cell interactions. BBA Rev Cancer. 2016;1866(2):290–9.
124.
go back to reference Pan M, Hou L, Zhang J, Zhao D, Hua J, Wang Z, et al. Inhibitory effect and molecular mechanism of mesenchymal stem cells on NSCLC cells. Mol Cell Biochem. 2018;441(1–2):63–76.PubMedCrossRef Pan M, Hou L, Zhang J, Zhao D, Hua J, Wang Z, et al. Inhibitory effect and molecular mechanism of mesenchymal stem cells on NSCLC cells. Mol Cell Biochem. 2018;441(1–2):63–76.PubMedCrossRef
125.
go back to reference Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef
126.
go back to reference Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013;2013:732742.PubMedPubMedCentralCrossRef Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013;2013:732742.PubMedPubMedCentralCrossRef
127.
go back to reference Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–62.PubMedCrossRef Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–62.PubMedCrossRef
128.
go back to reference Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer. 2018;9(17):3129.PubMedPubMedCentralCrossRef Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer. 2018;9(17):3129.PubMedPubMedCentralCrossRef
129.
go back to reference Goto T, Murata M, Terakura S, Nishida T, Adachi Y, Ushijima Y, et al. Phase I study of cord blood transplantation with intrabone marrow injection of mesenchymal stem cells: a clinical study protocol. Medicine. 2018;97:17.CrossRef Goto T, Murata M, Terakura S, Nishida T, Adachi Y, Ushijima Y, et al. Phase I study of cord blood transplantation with intrabone marrow injection of mesenchymal stem cells: a clinical study protocol. Medicine. 2018;97:17.CrossRef
130.
go back to reference Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE. 2018;13(5):e0195891.PubMedPubMedCentralCrossRef Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE. 2018;13(5):e0195891.PubMedPubMedCentralCrossRef
131.
go back to reference Al-Najar M, Khalil H, Al-Ajlouni J, Al-Antary E, Hamdan M, Rahmeh R, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017;12(1):190.PubMedPubMedCentralCrossRef Al-Najar M, Khalil H, Al-Ajlouni J, Al-Antary E, Hamdan M, Rahmeh R, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017;12(1):190.PubMedPubMedCentralCrossRef
132.
go back to reference Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci. 2010;101(12):2546–53.PubMedCrossRef Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci. 2010;101(12):2546–53.PubMedCrossRef
133.
go back to reference Zhao W, Ren G, Zhang L, Zhang Z, Liu J, Kuang P, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm. 2012;27(9):606–13.PubMedCrossRef Zhao W, Ren G, Zhang L, Zhang Z, Liu J, Kuang P, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm. 2012;27(9):606–13.PubMedCrossRef
134.
go back to reference Li T, Song B, Du X, Wei Z. Huo TJEjomr. Effect of bone-marrow-derived mesenchymal stem cells on high-potential hepatocellular carcinoma in mouse models: an intervention study. 2013;18(1):34. Li T, Song B, Du X, Wei Z. Huo TJEjomr. Effect of bone-marrow-derived mesenchymal stem cells on high-potential hepatocellular carcinoma in mouse models: an intervention study. 2013;18(1):34.
135.
go back to reference Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500.PubMedCrossRef Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500.PubMedCrossRef
136.
go back to reference Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi GJ, et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 2012;22(5):758–71.PubMedCrossRef Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi GJ, et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 2012;22(5):758–71.PubMedCrossRef
137.
go back to reference Ma B, Jiang H, Jia J, Di L, Song G, Yu J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol. 2012;14(10):764–73.PubMedCrossRef Ma B, Jiang H, Jia J, Di L, Song G, Yu J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol. 2012;14(10):764–73.PubMedCrossRef
138.
go back to reference Abd-Allah SH, Shalaby SM, Amal S, Elkader EA, Hussein S, Emam E, et al. Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy. 2014;16(9):1197–206.PubMedCrossRef Abd-Allah SH, Shalaby SM, Amal S, Elkader EA, Hussein S, Emam E, et al. Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy. 2014;16(9):1197–206.PubMedCrossRef
139.
go back to reference Seyhoun I, Hajighasemlou S, Muhammadnejad S, Ai J, Nikbakht M, Alizadeh A, et al. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma. J Cell Physiol. 2018;234(6):9495–503.PubMedCrossRef Seyhoun I, Hajighasemlou S, Muhammadnejad S, Ai J, Nikbakht M, Alizadeh A, et al. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma. J Cell Physiol. 2018;234(6):9495–503.PubMedCrossRef
140.
go back to reference Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and Validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. APJCP. 2018;19(6):1627.PubMedPubMedCentral Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and Validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. APJCP. 2018;19(6):1627.PubMedPubMedCentral
141.
go back to reference Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Bröker ME, Hoogduijn MJ, Ijzermans JN, et al. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013;34(10):2330–40.PubMedPubMedCentralCrossRef Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Bröker ME, Hoogduijn MJ, Ijzermans JN, et al. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013;34(10):2330–40.PubMedPubMedCentralCrossRef
142.
go back to reference Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86.PubMedCrossRef Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86.PubMedCrossRef
143.
go back to reference Gong P, Wang Y, Wang Y, Jin S, Luo H, Zhang J, et al. Effect of bone marrow mesenchymal stem cells on hepatocellular carcinoma in microcirculation. Tumor Biol. 2013;34(4):2161–8.CrossRef Gong P, Wang Y, Wang Y, Jin S, Luo H, Zhang J, et al. Effect of bone marrow mesenchymal stem cells on hepatocellular carcinoma in microcirculation. Tumor Biol. 2013;34(4):2161–8.CrossRef
144.
go back to reference Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE. 2012;7(8):e43272.PubMedPubMedCentralCrossRef Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE. 2012;7(8):e43272.PubMedPubMedCentralCrossRef
145.
go back to reference Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PCJS. Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012;152(3):449–54.PubMedCrossRef Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PCJS. Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012;152(3):449–54.PubMedCrossRef
146.
go back to reference Liu C, Liu Y, Xu X, Guo X, Sun G, Ma X. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer. 2016;16(1):566.PubMedPubMedCentralCrossRef Liu C, Liu Y, Xu X, Guo X, Sun G, Ma X. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer. 2016;16(1):566.PubMedPubMedCentralCrossRef
Metadata
Title
Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways
Authors
Jafar Ai
Neda Ketabchi
Javad Verdi
Nematollah Gheibi
Hossein Khadem Haghighian
Maria Kavianpour
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-1038-0

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine