Skip to main content
Top
Published in: Environmental Health and Preventive Medicine 1/2020

Open Access 01-12-2020 | Hepatocellular Carcinoma | Research article

Identification by TCGA database search of five genes that are aberrantly expressed and involved in hepatocellular carcinoma potentially via DNA methylation changes

Authors: Junya Matsushita, Takehiro Suzuki, Kazuyuki Okamura, Gaku Ichihara, Keiko Nohara

Published in: Environmental Health and Preventive Medicine | Issue 1/2020

Login to get access

Abstract

Background

Various treatments for hepatocellular carcinoma (HCC) are utilized in clinical practice; however, the prognosis is still poor on account of high recurrence rates. DNA methylation levels of CpG islands around promoters (promoter CpGis) inversely regulate gene expression and closely involved in carcinogenesis. As a new strategy, several chemicals globally inhibiting DNA methylation have been developed aiming at reducing DNA methylation levels and maintaining the expression of tumor suppressor genes. On the other hand, since these drugs nonspecifically modify DNA methylation, they can cause serious adverse effects. In order to ameliorate the methods by targeting specific CpGs, information of cancer-related genes that are regulated by DNA methylation is required.

Methods

We searched candidate genes whose expressions were regulated by DNA methylation of promoter CpGi and which are involved in HCC cases. To do so, we first identified genes whose expression were changed in HCC by comparing gene expressions of 371 HCC tissues and 41 non-tumor tissues using the Cancer Genome Atlas (TCGA) database. The genes were further selected for poor prognosis by log-rank test of Kaplan-Meier plot and for cancer relevance by Pubmed search. Expression profiles of upregulated genes in HCC tissues were assessed by Gene Ontology (GO) analysis. Finally, using DNA methylation data of TCGA database, we selected genes whose promoter DNA methylation levels were inversely correlated with gene expression.

Results

We found 115 genes which were significantly up- or downregulated in HCC tissues and were associated with poor prognosis and cancer relevance. The upregulated genes were significantly enriched in cell division, cell cycle, and cell proliferation. Among the upregulated genes in HCC, we identified hypomethylation of CpGis around promoters of FANCB, KIF15, KIF4A, ERCC6L, and UBE2C. In addition, TCGA data showed that the tumor suppressor gene P16 is unexpectedly overexpressed in many types of cancers.

Conclusions

We identified five candidate genes whose expressions were regulated by DNA methylation of promoter CpGi and associate with cancer cases and poor prognosis in HCC. Modification of site-specific DNA methylation of these genes enables a different approach for HCC treatment with higher selectivity and lower adverse effects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef
4.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef
5.
go back to reference Skvortsova K, Iovino N, Bogdanovic O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:774–90.PubMedCrossRef Skvortsova K, Iovino N, Bogdanovic O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:774–90.PubMedCrossRef
6.
go back to reference Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget. 2017;8:5629–37.PubMedCrossRef Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget. 2017;8:5629–37.PubMedCrossRef
8.
go back to reference Khan FS, Ali I, Afridi UK, Ishtiaq M, Mehmood R. Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int. 2017;11:45–53.PubMedCrossRef Khan FS, Ali I, Afridi UK, Ishtiaq M, Mehmood R. Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int. 2017;11:45–53.PubMedCrossRef
9.
go back to reference Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61:1945–56.PubMedCrossRef Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61:1945–56.PubMedCrossRef
11.
go back to reference Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine. 2016;8:30–9.PubMedPubMedCentralCrossRef Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine. 2016;8:30–9.PubMedPubMedCentralCrossRef
12.
go back to reference Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.PubMedCrossRef Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.PubMedCrossRef
13.
go back to reference Ma YY, Zhao M, Liu Y, Zhao DF, Wang LX, Chen XP, et al. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology. 2019;24:507–15.PubMedCrossRef Ma YY, Zhao M, Liu Y, Zhao DF, Wang LX, Chen XP, et al. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology. 2019;24:507–15.PubMedCrossRef
14.
go back to reference Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004;24:1270–8.PubMedPubMedCentralCrossRef Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004;24:1270–8.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Garcia JS, Jain N, Godley LA. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther. 2010;3:1–13.PubMedPubMedCentral Garcia JS, Jain N, Godley LA. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther. 2010;3:1–13.PubMedPubMedCentral
18.
go back to reference Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, et al. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun. 2017;8:16026.PubMedPubMedCentralCrossRef Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, et al. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun. 2017;8:16026.PubMedPubMedCentralCrossRef
19.
go back to reference McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5:866–74.PubMedPubMedCentralCrossRef McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5:866–74.PubMedPubMedCentralCrossRef
20.
go back to reference Shin SH, Kim BH, Jang JJ, Suh KS, Kang GH. Identification of novel methylation markers in hepatocellular carcinoma using a methylation array. J Korean Med Sci. 2010;25:1152–9.PubMedPubMedCentralCrossRef Shin SH, Kim BH, Jang JJ, Suh KS, Kang GH. Identification of novel methylation markers in hepatocellular carcinoma using a methylation array. J Korean Med Sci. 2010;25:1152–9.PubMedPubMedCentralCrossRef
21.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48:452–8.PubMedCrossRef Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48:452–8.PubMedCrossRef
22.
go back to reference Huangda W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef Huangda W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
23.
go back to reference Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34:D322–6.CrossRef Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34:D322–6.CrossRef
25.
go back to reference Arya AK, Bhadada SK, Singh P, Sachdeva N, Saikia UN, Dahiya D, et al. Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid adenomas. Sci Rep. 2017;7:3123.PubMedPubMedCentralCrossRef Arya AK, Bhadada SK, Singh P, Sachdeva N, Saikia UN, Dahiya D, et al. Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid adenomas. Sci Rep. 2017;7:3123.PubMedPubMedCentralCrossRef
26.
go back to reference Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.PubMed Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.PubMed
28.
go back to reference Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting Mitosis in Cancer: Emerging Strategies. Mol Cell. 2015;60:524–36.PubMedCrossRef Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting Mitosis in Cancer: Emerging Strategies. Mol Cell. 2015;60:524–36.PubMedCrossRef
30.
go back to reference Sun XJ, Wang MC, Zhang FH, Kong X. An integrated analysis of genome-wide DNA methylation and gene expression data in hepatocellular carcinoma. FEBS Open Bio. 2018;8:1093–103.PubMedPubMedCentralCrossRef Sun XJ, Wang MC, Zhang FH, Kong X. An integrated analysis of genome-wide DNA methylation and gene expression data in hepatocellular carcinoma. FEBS Open Bio. 2018;8:1093–103.PubMedPubMedCentralCrossRef
31.
go back to reference Alix-Panabieres C, Cayrefourcq L, Mazard T, Maudelonde T, Assenat E, Assou S. Molecular Portrait of Metastasis-Competent Circulating Tumor Cells in Colon Cancer Reveals the Crucial Role of Genes Regulating Energy Metabolism and DNA Repair. Clin Chem. 2017;63:700–13.PubMedCrossRef Alix-Panabieres C, Cayrefourcq L, Mazard T, Maudelonde T, Assenat E, Assou S. Molecular Portrait of Metastasis-Competent Circulating Tumor Cells in Colon Cancer Reveals the Crucial Role of Genes Regulating Energy Metabolism and DNA Repair. Clin Chem. 2017;63:700–13.PubMedCrossRef
32.
go back to reference Glaas MF, Wiek C, Wolter LM, Roellecke K, Balz V, Okpanyi V, et al. Mutational and Functional Analysis of FANCB as a Candidate Gene for Sporadic Head and Neck Squamous Cell Carcinomas. Anticancer Res. 2018;38:1317–25.PubMed Glaas MF, Wiek C, Wolter LM, Roellecke K, Balz V, Okpanyi V, et al. Mutational and Functional Analysis of FANCB as a Candidate Gene for Sporadic Head and Neck Squamous Cell Carcinomas. Anticancer Res. 2018;38:1317–25.PubMed
33.
go back to reference Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics. 2020;20:211–21.PubMedCrossRef Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics. 2020;20:211–21.PubMedCrossRef
34.
go back to reference Myers SM, Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem. 2016;8:463–89.PubMedCrossRef Myers SM, Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem. 2016;8:463–89.PubMedCrossRef
36.
go back to reference Hou G, Dong C, Dong Z, Liu G, Xu H, Chen L, et al. Upregulate KIF4A Enhances Proliferation, Invasion of Hepatocellular Carcinoma and Indicates poor prognosis Across Human Cancer Types. Sci Rep. 2017;7:4148.PubMedPubMedCentralCrossRef Hou G, Dong C, Dong Z, Liu G, Xu H, Chen L, et al. Upregulate KIF4A Enhances Proliferation, Invasion of Hepatocellular Carcinoma and Indicates poor prognosis Across Human Cancer Types. Sci Rep. 2017;7:4148.PubMedPubMedCentralCrossRef
37.
go back to reference Sun YF, Wu HL, Shi RF, Chen L, Meng C. KIF15 Promotes Proliferation and Growth of Hepatocellular Carcinoma. Anal Cell Pathol (Amst). 2020;2020:6403012. Sun YF, Wu HL, Shi RF, Chen L, Meng C. KIF15 Promotes Proliferation and Growth of Hepatocellular Carcinoma. Anal Cell Pathol (Amst). 2020;2020:6403012.
38.
go back to reference Gao H, Chen X, Cai Q, Shang Z, Niu Y. Increased KIF4A expression is a potential prognostic factor in prostate cancer. Oncol Lett. 2018;15:7941–7.PubMedPubMedCentral Gao H, Chen X, Cai Q, Shang Z, Niu Y. Increased KIF4A expression is a potential prognostic factor in prostate cancer. Oncol Lett. 2018;15:7941–7.PubMedPubMedCentral
39.
go back to reference Qiao Y, Chen J, Ma C, Liu Y, Li P, Wang Y, et al. Increased KIF15 Expression Predicts a Poor Prognosis in Patients with Lung Adenocarcinoma. Cell Physiol Biochem. 2018;51:1–10.PubMedCrossRef Qiao Y, Chen J, Ma C, Liu Y, Li P, Wang Y, et al. Increased KIF15 Expression Predicts a Poor Prognosis in Patients with Lung Adenocarcinoma. Cell Physiol Biochem. 2018;51:1–10.PubMedCrossRef
40.
go back to reference Pu SY, Yu Q, Wu H, Jiang JJ, Chen XQ, He YH, et al. ERCC6L, a DNA helicase, is involved in cell proliferation and associated with survival and progress in breast and kidney cancers. Oncotarget. 2017;8:42116–24.PubMedPubMedCentralCrossRef Pu SY, Yu Q, Wu H, Jiang JJ, Chen XQ, He YH, et al. ERCC6L, a DNA helicase, is involved in cell proliferation and associated with survival and progress in breast and kidney cancers. Oncotarget. 2017;8:42116–24.PubMedPubMedCentralCrossRef
41.
go back to reference Xie Y, Yu J, Wang F, Li M, Qiu X, Liu Y, et al. ERCC6L promotes cell growth and invasion in human colorectal cancer. Oncol Lett. 2019;18:237–46.PubMedPubMedCentral Xie Y, Yu J, Wang F, Li M, Qiu X, Liu Y, et al. ERCC6L promotes cell growth and invasion in human colorectal cancer. Oncol Lett. 2019;18:237–46.PubMedPubMedCentral
42.
go back to reference Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, Mimori K, et al. Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression. Int J Cancer. 2007;121:33–8.PubMedCrossRef Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, Mimori K, et al. Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression. Int J Cancer. 2007;121:33–8.PubMedCrossRef
43.
go back to reference Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF, Butz N, Mestan J, et al. Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene. 2004;23:6621–9.PubMedCrossRef Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF, Butz N, Mestan J, et al. Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene. 2004;23:6621–9.PubMedCrossRef
45.
go back to reference Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252.PubMedPubMedCentralCrossRef Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252.PubMedPubMedCentralCrossRef
46.
go back to reference Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci. 2018;19. Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci. 2018;19.
47.
go back to reference Horne DJ, Jones BE, Kamada A, Fukushima K, Winthrop KL, Siegel SAR, et al. Multicenter study of QuantiFERON((R))-TB Gold Plus in patients with active tuberculosis. Int J Tuberc Lung Dis. 2018;22:617–21.PubMedCrossRef Horne DJ, Jones BE, Kamada A, Fukushima K, Winthrop KL, Siegel SAR, et al. Multicenter study of QuantiFERON((R))-TB Gold Plus in patients with active tuberculosis. Int J Tuberc Lung Dis. 2018;22:617–21.PubMedCrossRef
48.
go back to reference Inoue K, Fry EA. Aberrant expression of p16(INK4a) in human cancers - a new biomarker? Cancer Rep Rev. 2018;2. Inoue K, Fry EA. Aberrant expression of p16(INK4a) in human cancers - a new biomarker? Cancer Rep Rev. 2018;2.
49.
go back to reference Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30:2087–97.PubMedCrossRef Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30:2087–97.PubMedCrossRef
Metadata
Title
Identification by TCGA database search of five genes that are aberrantly expressed and involved in hepatocellular carcinoma potentially via DNA methylation changes
Authors
Junya Matsushita
Takehiro Suzuki
Kazuyuki Okamura
Gaku Ichihara
Keiko Nohara
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Environmental Health and Preventive Medicine / Issue 1/2020
Print ISSN: 1342-078X
Electronic ISSN: 1347-4715
DOI
https://doi.org/10.1186/s12199-020-00871-8

Other articles of this Issue 1/2020

Environmental Health and Preventive Medicine 1/2020 Go to the issue