Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Hepatocellular Carcinoma | Review

A comprehensive review about the utilization of immune checkpoint inhibitors and combination therapy in hepatocellular carcinoma: an updated review

Authors: Faezeh Sharafi, Sadegh Abaei Hasani, Samira Alesaeidi, Mohammad Saeed Kahrizi, Ali Adili, Shadi Ghoreishizadeh, Navid Shomali, Rozita Tamjidifar, Ramin Aslaminabad, Morteza Akbari

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

A pharmacological class known as immune checkpoint inhibitors (ICIs) has been developed as a potential treatment option for various malignancies, including HCC. In HCC, ICIs have demonstrated clinically significant advantages as monotherapy or combination therapy. ICIs that target programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1), as well as cytotoxic T lymphocyte antigen 4 (CTLA-4), have made significant advances in cancer treatment. In hepatocellular carcinoma (HCC), several ICIs are being tested in clinical trials, and the area is quickly developing. As immunotherapy-related adverse events (irAEs) linked with ICI therapy expands and gain worldwide access, up-to-date management guidelines become crucial to the safety profile of ICIs. This review aims to describe the evidence for ICIs in treating HCC, emphasizing the use of combination ICIs.
Literature
1.
go back to reference Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.PubMedCrossRef Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.PubMedCrossRef
2.
go back to reference Schlachterman A, Craft WW Jr, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol. 2015;21(28):8478.PubMedPubMedCentralCrossRef Schlachterman A, Craft WW Jr, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol. 2015;21(28):8478.PubMedPubMedCentralCrossRef
3.
go back to reference Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, Frazzetto E, Ruggeri MI, Malaguarnera G, Bertino N. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, Frazzetto E, Ruggeri MI, Malaguarnera G, Bertino N. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef
4.
go back to reference Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.PubMedPubMedCentralCrossRef Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.PubMedPubMedCentralCrossRef
6.
go back to reference Leone P, Solimando AG, Fasano R, Argentiero A, Malerba E, Buonavoglia A, Lupo LG, De Re V, Silvestris N, Racanelli V. The evolving role of immune checkpoint inhibitors in hepatocellular carcinoma treatment. Vaccines. 2021;9(5):532.PubMedPubMedCentralCrossRef Leone P, Solimando AG, Fasano R, Argentiero A, Malerba E, Buonavoglia A, Lupo LG, De Re V, Silvestris N, Racanelli V. The evolving role of immune checkpoint inhibitors in hepatocellular carcinoma treatment. Vaccines. 2021;9(5):532.PubMedPubMedCentralCrossRef
7.
go back to reference Sangro B, Chan SL, Meyer T, Reig M, El-Khoueiry A, Galle PR. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. J Hepatol. 2020;72(2):320–41.PubMedPubMedCentralCrossRef Sangro B, Chan SL, Meyer T, Reig M, El-Khoueiry A, Galle PR. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. J Hepatol. 2020;72(2):320–41.PubMedPubMedCentralCrossRef
9.
go back to reference Siu EH-L, Chan AW-H, Chong CC-N, Chan SL, Lo K-W, Cheung ST. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Transl Gastroenterol Hepatol. 2018;3:89.PubMedPubMedCentralCrossRef Siu EH-L, Chan AW-H, Chong CC-N, Chan SL, Lo K-W, Cheung ST. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Transl Gastroenterol Hepatol. 2018;3:89.PubMedPubMedCentralCrossRef
10.
go back to reference Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.PubMedCrossRef Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.PubMedCrossRef
11.
go back to reference Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. In: Seminars in immunopathology. Springer; 2009:333–43. Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. In: Seminars in immunopathology. Springer; 2009:333–43.
12.
go back to reference Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.PubMedCrossRef Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.PubMedCrossRef
13.
go back to reference Abd El Aziz MA, Facciorusso A, Nayfeh T, Saadi S, Elnaggar M, Cotsoglou C, Sacco R. Immune checkpoint inhibitors for unresectable hepatocellular carcinoma. Vaccines. 2020;8(4):616.PubMedCentralCrossRef Abd El Aziz MA, Facciorusso A, Nayfeh T, Saadi S, Elnaggar M, Cotsoglou C, Sacco R. Immune checkpoint inhibitors for unresectable hepatocellular carcinoma. Vaccines. 2020;8(4):616.PubMedCentralCrossRef
14.
go back to reference Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs—a new layer of myeloid-derived suppressor cells regulation. Front Immunol. 2020;11:2378.CrossRef Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs—a new layer of myeloid-derived suppressor cells regulation. Front Immunol. 2020;11:2378.CrossRef
15.
go back to reference Yu S, Wang Y, Hou J, Li W, Wang X, Xiang L, Tan D, Wang W, Jiang L, Claret FX. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS ONE. 2020;15(4):e0231003.PubMedPubMedCentralCrossRef Yu S, Wang Y, Hou J, Li W, Wang X, Xiang L, Tan D, Wang W, Jiang L, Claret FX. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS ONE. 2020;15(4):e0231003.PubMedPubMedCentralCrossRef
16.
go back to reference Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R. Immune-based therapies for hepatocellular carcinoma. Oncogene. 2020;39(18):3620–37.PubMedPubMedCentralCrossRef Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R. Immune-based therapies for hepatocellular carcinoma. Oncogene. 2020;39(18):3620–37.PubMedPubMedCentralCrossRef
18.
go back to reference Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HS. Immune evasion in cancer: mechanistic basis and therapeutic strategies. In: Seminars in cancer biology. Elsevier; 2015:S185–S98. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HS. Immune evasion in cancer: mechanistic basis and therapeutic strategies. In: Seminars in cancer biology. Elsevier; 2015:S185–S98.
20.
go back to reference Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A, Sahebkar A. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–37.PubMedCrossRef Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A, Sahebkar A. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–37.PubMedCrossRef
21.
go back to reference Langhans B, Nischalke HD, Krämer B, Dold L, Lutz P, Mohr R, Vogt A, Toma M, Eis-Hübinger AM, Nattermann J. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother. 2019;68(12):2055–66.PubMedCrossRef Langhans B, Nischalke HD, Krämer B, Dold L, Lutz P, Mohr R, Vogt A, Toma M, Eis-Hübinger AM, Nattermann J. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother. 2019;68(12):2055–66.PubMedCrossRef
22.
go back to reference Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, Assenat E, Brandi G, Pracht M, Lim HY. Ramucirumab after Sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96.PubMedCrossRef Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, Assenat E, Brandi G, Pracht M, Lim HY. Ramucirumab after Sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96.PubMedCrossRef
23.
go back to reference Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. The Lancet. 2021;398(10304):1002–14.CrossRef Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. The Lancet. 2021;398(10304):1002–14.CrossRef
24.
go back to reference Sanmamed MF, Chen L. Inducible expression of B7–H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J (Sudbury, Mass). 2014;20(4):256.CrossRef Sanmamed MF, Chen L. Inducible expression of B7–H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J (Sudbury, Mass). 2014;20(4):256.CrossRef
25.
go back to reference Ji M, Liu Y, Li Q, Li X-D, Zhao W-Q, Zhang H, Zhang X, Jiang J-T, Wu C-P. PD-1/PD-L1 pathway in non-small-cell lung cancer and its relation with EGFR mutation. J Transl Med. 2015;13(1):1–6.CrossRef Ji M, Liu Y, Li Q, Li X-D, Zhao W-Q, Zhang H, Zhang X, Jiang J-T, Wu C-P. PD-1/PD-L1 pathway in non-small-cell lung cancer and its relation with EGFR mutation. J Transl Med. 2015;13(1):1–6.CrossRef
26.
go back to reference Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.PubMedPubMedCentralCrossRef Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.PubMedPubMedCentralCrossRef
27.
go back to reference Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):1–11.CrossRef Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):1–11.CrossRef
28.
go back to reference Mocan T, Sparchez Z, Craciun R, Bora C, Leucuta D. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol. 2019;21(6):702–12.PubMedCrossRef Mocan T, Sparchez Z, Craciun R, Bora C, Leucuta D. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol. 2019;21(6):702–12.PubMedCrossRef
29.
go back to reference Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, Zhou J, Li B-Z, Shi Y-H, Xiao Y-S. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9.PubMedCrossRef Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, Zhou J, Li B-Z, Shi Y-H, Xiao Y-S. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9.PubMedCrossRef
30.
go back to reference Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, Wang X, Zhou H, Zhang L, Shi Y. M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol. 2019;10:1643.PubMedPubMedCentralCrossRef Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, Wang X, Zhou H, Zhang L, Shi Y. M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol. 2019;10:1643.PubMedPubMedCentralCrossRef
31.
go back to reference Macek Jilkova Z, Aspord C, Decaens T. Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: current status and challenges. Cancers. 2019;11(10):1554.PubMedCentralCrossRef Macek Jilkova Z, Aspord C, Decaens T. Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: current status and challenges. Cancers. 2019;11(10):1554.PubMedCentralCrossRef
32.
go back to reference Jilkova ZM, Aspord C, Kurma K, Granon A, Sengel C, Sturm N, Marche PN, Decaens T. Immunologic features of patients with advanced hepatocellular carcinoma before and during Sorafenib or anti-programmed death-1/programmed death-L1 treatment. Clin Transl Gastroenterol. 2019;10(7):e00058.CrossRef Jilkova ZM, Aspord C, Kurma K, Granon A, Sengel C, Sturm N, Marche PN, Decaens T. Immunologic features of patients with advanced hepatocellular carcinoma before and during Sorafenib or anti-programmed death-1/programmed death-L1 treatment. Clin Transl Gastroenterol. 2019;10(7):e00058.CrossRef
33.
go back to reference Kim H-D, Song G-W, Park S, Jung MK, Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S. Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterology. 2018;155(6):1936-1950.e1917.PubMedCrossRef Kim H-D, Song G-W, Park S, Jung MK, Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S. Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterology. 2018;155(6):1936-1950.e1917.PubMedCrossRef
34.
go back to reference Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W, Wu P. High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 2018;38(8):1449–58.PubMedPubMedCentralCrossRef Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W, Wu P. High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 2018;38(8):1449–58.PubMedPubMedCentralCrossRef
35.
go back to reference Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM, Anders RA, Drake CG. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS ONE. 2014;9(11):e109080.PubMedPubMedCentralCrossRef Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM, Anders RA, Drake CG. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS ONE. 2014;9(11):e109080.PubMedPubMedCentralCrossRef
36.
go back to reference Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 shapes anti-tumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3(4):412–23.PubMedPubMedCentralCrossRef Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 shapes anti-tumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3(4):412–23.PubMedPubMedCentralCrossRef
37.
go back to reference Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol. 2021;14(1):1–17.CrossRef Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol. 2021;14(1):1–17.CrossRef
39.
go back to reference Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol. 2019;10:453.PubMedPubMedCentralCrossRef Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol. 2019;10:453.PubMedPubMedCentralCrossRef
40.
go back to reference Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.PubMedCrossRef Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.PubMedCrossRef
41.
go back to reference Chen L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336–47.PubMedCrossRef Chen L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336–47.PubMedCrossRef
42.
go back to reference Camacho LH. Novel therapies targeting the immune system: CTLA4 blockade with tremelimumab (CP-675,206), a fully human monoclonal antibody. Expert Opin Investig Drugs. 2008;17(3):371–85.PubMedCrossRef Camacho LH. Novel therapies targeting the immune system: CTLA4 blockade with tremelimumab (CP-675,206), a fully human monoclonal antibody. Expert Opin Investig Drugs. 2008;17(3):371–85.PubMedCrossRef
43.
go back to reference Boasberg P, Hamid O, O’Day S. Ipilimumab: unleashing the power of the immune system through CTLA-4 blockade. In: Seminars in oncology. Elsevier; 2010:440–49. Boasberg P, Hamid O, O’Day S. Ipilimumab: unleashing the power of the immune system through CTLA-4 blockade. In: Seminars in oncology. Elsevier; 2010:440–49.
44.
go back to reference Alegre M-L, Shiels H, Thompson CB, Gajewski TF. Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol. 1998;161(7):3347–56.PubMed Alegre M-L, Shiels H, Thompson CB, Gajewski TF. Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol. 1998;161(7):3347–56.PubMed
45.
go back to reference McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol. 1999;77(1):1–10.PubMedCrossRef McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol. 1999;77(1):1–10.PubMedCrossRef
46.
go back to reference Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–8.PubMedCrossRef Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–8.PubMedCrossRef
47.
go back to reference Motoshima T, Komohara Y, Horlad H, Takeuchi A, Maeda Y, Tanoue K, Kawano Y, Harada M, Takeya M, Eto M. Sorafenib enhances the anti-tumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncol Rep. 2015;33(6):2947–53.PubMedCrossRef Motoshima T, Komohara Y, Horlad H, Takeuchi A, Maeda Y, Tanoue K, Kawano Y, Harada M, Takeya M, Eto M. Sorafenib enhances the anti-tumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncol Rep. 2015;33(6):2947–53.PubMedCrossRef
48.
go back to reference Leach DR, Krummel MF, Allison JP. Enhancement of anti-tumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.PubMedCrossRef Leach DR, Krummel MF, Allison JP. Enhancement of anti-tumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.PubMedCrossRef
49.
go back to reference Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):1–10.CrossRef Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):1–10.CrossRef
51.
go back to reference Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedCrossRef Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedCrossRef
52.
go back to reference Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. In: Allergy and asthma proceedings. 2013:e21–6. Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. In: Allergy and asthma proceedings. 2013:e21–6.
53.
go back to reference Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRef Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRef
54.
go back to reference Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173–85.PubMedCrossRef Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173–85.PubMedCrossRef
55.
go back to reference Yoshino Y, Qi H, Kanazawa R, Sugamata M, Suzuki K, Kobayashi A, Shindo K, Matsuzawa A, Shibata S, Endo S. RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene. 2019;38(16):3077–92.PubMedCrossRef Yoshino Y, Qi H, Kanazawa R, Sugamata M, Suzuki K, Kobayashi A, Shindo K, Matsuzawa A, Shibata S, Endo S. RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene. 2019;38(16):3077–92.PubMedCrossRef
56.
go back to reference Chen Y, Chi P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol. 2018;11(1):1–5.CrossRef Chen Y, Chi P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol. 2018;11(1):1–5.CrossRef
57.
go back to reference Wu W, Shi Y, Li S, Zhang Y, Liu Y, Wu Y, Chen Z. Blockade of T im-3 signaling restores the virus-specific CD 8+ T-cell response in patients with chronic hepatitis B. Eur J Immunol. 2012;42(5):1180–91.PubMedCrossRef Wu W, Shi Y, Li S, Zhang Y, Liu Y, Wu Y, Chen Z. Blockade of T im-3 signaling restores the virus-specific CD 8+ T-cell response in patients with chronic hepatitis B. Eur J Immunol. 2012;42(5):1180–91.PubMedCrossRef
58.
go back to reference Hakemi MG, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O, Bazhin AV. The role of TIM-3 in Hepatocellular Carcinoma: a promising target for immunotherapy? Front Oncol. 2020;10:601661.CrossRef Hakemi MG, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O, Bazhin AV. The role of TIM-3 in Hepatocellular Carcinoma: a promising target for immunotherapy? Front Oncol. 2020;10:601661.CrossRef
59.
go back to reference Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X, Ma C. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64(10):1593–604.PubMedCrossRef Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X, Ma C. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64(10):1593–604.PubMedCrossRef
60.
go back to reference Tan S, Xu Y, Wang Z, Wang T, Du X, Song X, Guo X, Peng J, Zhang J, Liang Y. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling. Cancer Res. 2020;80(5):1130–42.PubMedCrossRef Tan S, Xu Y, Wang Z, Wang T, Du X, Song X, Guo X, Peng J, Zhang J, Liang Y. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling. Cancer Res. 2020;80(5):1130–42.PubMedCrossRef
61.
go back to reference Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57.PubMedCrossRef Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57.PubMedCrossRef
62.
go back to reference Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. In: Yoshimura A, editor. Emerging concepts targeting immune checkpoints in cancer and autoimmunity. Cham: Springer; 2017. p. 127–56.CrossRef Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. In: Yoshimura A, editor. Emerging concepts targeting immune checkpoints in cancer and autoimmunity. Cham: Springer; 2017. p. 127–56.CrossRef
63.
go back to reference Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit pro-inflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569–81.PubMedPubMedCentralCrossRef Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit pro-inflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569–81.PubMedPubMedCentralCrossRef
64.
go back to reference Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci. 2009;106(42):17858–63.PubMedPubMedCentralCrossRef Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci. 2009;106(42):17858–63.PubMedPubMedCentralCrossRef
65.
go back to reference Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B. The immunoreceptor TIGIT regulates anti-tumor and antiviral CD8+ T cell effector function. Cancer Cell. 2014;26(6):923–37.PubMedCrossRef Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B. The immunoreceptor TIGIT regulates anti-tumor and antiviral CD8+ T cell effector function. Cancer Cell. 2014;26(6):923–37.PubMedCrossRef
66.
go back to reference Fuhrman CA, Yeh W-I, Seay HR, Lakshmi PS, Chopra G, Zhang L, Perry DJ, McClymont SA, Yadav M, Lopez M-C. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol. 2015;195(1):145–55.PubMedCrossRef Fuhrman CA, Yeh W-I, Seay HR, Lakshmi PS, Chopra G, Zhang L, Perry DJ, McClymont SA, Yadav M, Lopez M-C. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol. 2015;195(1):145–55.PubMedCrossRef
67.
go back to reference Kurtulus S, Sakuishi K, Ngiow S-F, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Investig. 2015;125(11):4053–62.PubMedPubMedCentralCrossRef Kurtulus S, Sakuishi K, Ngiow S-F, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Investig. 2015;125(11):4053–62.PubMedPubMedCentralCrossRef
68.
go back to reference Minnie SA, Kuns RD, Gartlan KH, Zhang P, Wilkinson AN, Samson L, Guillerey C, Engwerda C, MacDonald KP, Smyth MJ. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood J Am Soc Hematol. 2018;132(16):1675–88. Minnie SA, Kuns RD, Gartlan KH, Zhang P, Wilkinson AN, Samson L, Guillerey C, Engwerda C, MacDonald KP, Smyth MJ. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood J Am Soc Hematol. 2018;132(16):1675–88.
69.
go back to reference Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H. T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 2016;22(12):3057–66.PubMedCrossRef Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H. T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 2016;22(12):3057–66.PubMedCrossRef
70.
go back to reference Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M, Stannard K. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood J Am Soc Hematol. 2018;132(16):1689–94. Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M, Stannard K. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood J Am Soc Hematol. 2018;132(16):1689–94.
71.
go back to reference He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W. CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 2017;77(22):6375–88.PubMedCrossRef He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W. CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 2017;77(22):6375–88.PubMedCrossRef
72.
go back to reference Duan X, Liu J, Cui J, Ma B, Zhou Q, Yang X, Lu Z, Du Y, Su C. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep. 2019;20(4):3773–81.PubMedPubMedCentral Duan X, Liu J, Cui J, Ma B, Zhou Q, Yang X, Lu Z, Du Y, Su C. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep. 2019;20(4):3773–81.PubMedPubMedCentral
73.
go back to reference Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu L-F, Gondek D, Wang Y, Fava RA. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208(3):577–92.PubMedPubMedCentralCrossRef Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu L-F, Gondek D, Wang Y, Fava RA. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208(3):577–92.PubMedPubMedCentralCrossRef
74.
go back to reference Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, Guan J, Singh R, Rollins S, Solorz A. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology. 2019;156(1):74–85.PubMedCrossRef Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, Guan J, Singh R, Rollins S, Solorz A. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology. 2019;156(1):74–85.PubMedCrossRef
75.
go back to reference Johnston RJ, Su LJ, Pinckney J, Critton D, Boyer E, Krishnakumar A, Corbett M, Rankin AL, Dibella R, Campbell L. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019;574(7779):565–70.PubMedCrossRef Johnston RJ, Su LJ, Pinckney J, Critton D, Boyer E, Krishnakumar A, Corbett M, Rankin AL, Dibella R, Campbell L. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019;574(7779):565–70.PubMedCrossRef
76.
77.
go back to reference Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V, Syrigos K, Toki M, Zhao H, Chen L. Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res. 2018;24(7):1562–73.PubMedCrossRef Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V, Syrigos K, Toki M, Zhao H, Chen L. Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res. 2018;24(7):1562–73.PubMedCrossRef
78.
go back to reference Hong S, Yuan Q, Xia H, Zhu G, Feng Y, Wang Q, Zhang Z, He W, Lu J, Dong C. Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential target for immunotherapy. Protein Cell. 2019;10(11):840–5.PubMedPubMedCentralCrossRef Hong S, Yuan Q, Xia H, Zhu G, Feng Y, Wang Q, Zhang Z, He W, Lu J, Dong C. Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential target for immunotherapy. Protein Cell. 2019;10(11):840–5.PubMedPubMedCentralCrossRef
79.
go back to reference Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z, Ni L. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 2018;67(11):1685–94.PubMedCrossRef Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z, Ni L. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 2018;67(11):1685–94.PubMedCrossRef
80.
go back to reference Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, Baba T, Yamaguchi K, Horikawa N, Murakami R. VISTA expressed in tumour cells regulates T cell function. Br J Cancer. 2019;120(1):115–27.PubMedCrossRef Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, Baba T, Yamaguchi K, Horikawa N, Murakami R. VISTA expressed in tumour cells regulates T cell function. Br J Cancer. 2019;120(1):115–27.PubMedCrossRef
81.
go back to reference Zong L, Mo S, Yu S, Zhou Y, Zhang M, Chen J, Xiang Y. Expression of the immune checkpoint VISTA in breast cancer. Cancer Immunol Immunother. 2020;69(8):1437–46.PubMedCrossRef Zong L, Mo S, Yu S, Zhou Y, Zhang M, Chen J, Xiang Y. Expression of the immune checkpoint VISTA in breast cancer. Cancer Immunol Immunother. 2020;69(8):1437–46.PubMedCrossRef
82.
go back to reference Loeser H, Kraemer M, Gebauer F, Bruns C, Schröder W, Zander T, Persa O-D, Alakus H, Hoelscher A, Buettner R. The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. Oncoimmunology. 2019;8(5):e1581546.PubMedPubMedCentralCrossRef Loeser H, Kraemer M, Gebauer F, Bruns C, Schröder W, Zander T, Persa O-D, Alakus H, Hoelscher A, Buettner R. The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. Oncoimmunology. 2019;8(5):e1581546.PubMedPubMedCentralCrossRef
83.
go back to reference Zhang M, Pang H-J, Zhao W, Li Y-F, Yan L-X, Dong Z-Y, He X-F. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer. 2018;18(1):1–8. Zhang M, Pang H-J, Zhao W, Li Y-F, Yan L-X, Dong Z-Y, He X-F. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer. 2018;18(1):1–8.
84.
go back to reference Im E, Sim DY, Lee H-J, Park JE, Park WY, Ko S, Kim B, Shim BS, Kim S-H. Immune functions as, a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy. In: Seminars in cancer biology. Elsevier; 2021. Im E, Sim DY, Lee H-J, Park JE, Park WY, Ko S, Kim B, Shim BS, Kim S-H. Immune functions as, a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy. In: Seminars in cancer biology. Elsevier; 2021.
85.
go back to reference El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim T-Y, Choo S-P, Trojan J, Welling TH 3rd. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet. 2017;389(10088):2492–502.CrossRef El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim T-Y, Choo S-P, Trojan J, Welling TH 3rd. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet. 2017;389(10088):2492–502.CrossRef
87.
go back to reference Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with Sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52.PubMedCrossRef Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with Sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52.PubMedCrossRef
88.
go back to reference Wainberg ZA, Segal NH, Jaeger D, Lee K-H, Marshall J, Antonia SJ, Butler M, Sanborn RE, Nemunaitis JJ, Carlson CA. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). Alexandria: American Society of Clinical Oncology; 2017.CrossRef Wainberg ZA, Segal NH, Jaeger D, Lee K-H, Marshall J, Antonia SJ, Butler M, Sanborn RE, Nemunaitis JJ, Carlson CA. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). Alexandria: American Society of Clinical Oncology; 2017.CrossRef
89.
go back to reference Lee M, Ryoo B-Y, Hsu C-H, Numata K, Stein S, Verret W, Hack S, Spahn J, Liu B, Abdullah H. Randomised efficacy and safety results for atezolizumab (Atezo)+ bevacizumab (Bev) in patients (pts) with previously untreated, unresectable hepatocellular carcinoma (HCC). Ann Oncol. 2019;30:v875.CrossRef Lee M, Ryoo B-Y, Hsu C-H, Numata K, Stein S, Verret W, Hack S, Spahn J, Liu B, Abdullah H. Randomised efficacy and safety results for atezolizumab (Atezo)+ bevacizumab (Bev) in patients (pts) with previously untreated, unresectable hepatocellular carcinoma (HCC). Ann Oncol. 2019;30:v875.CrossRef
90.
go back to reference Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, Chen H. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9(5–6):176.PubMedPubMedCentralCrossRef Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, Chen H. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9(5–6):176.PubMedPubMedCentralCrossRef
91.
go back to reference Gravara LD, Battiloro C, Cantile R, Letizia A, Vitiello F, Montesarchio V, Rocco D. Chemotherapy and/or immune checkpoint inhibitors in NSCLC first-line setting: what is the best approach? Future Med. 2020;9: LMT22. Gravara LD, Battiloro C, Cantile R, Letizia A, Vitiello F, Montesarchio V, Rocco D. Chemotherapy and/or immune checkpoint inhibitors in NSCLC first-line setting: what is the best approach? Future Med. 2020;9: LMT22.
92.
go back to reference Alsuwaigh R, Lee J, Chan G, Chee CE, Choo SP. Response to targeted therapy or chemotherapy following immunotherapy in patients with gastrointestinal cancers-a case series. J Immunother Cancer. 2019;7(1):1–6.CrossRef Alsuwaigh R, Lee J, Chan G, Chee CE, Choo SP. Response to targeted therapy or chemotherapy following immunotherapy in patients with gastrointestinal cancers-a case series. J Immunother Cancer. 2019;7(1):1–6.CrossRef
94.
go back to reference Lee BM, Seong J. Radiotherapy as an immune checkpoint blockade combination strategy for hepatocellular carcinoma. World J Gastroenterol. 2021;27(10):919.PubMedPubMedCentralCrossRef Lee BM, Seong J. Radiotherapy as an immune checkpoint blockade combination strategy for hepatocellular carcinoma. World J Gastroenterol. 2021;27(10):919.PubMedPubMedCentralCrossRef
95.
go back to reference Kim K-J, Kim J-H, Lee SJ, Lee E-J, Shin E-C, Seong J. Radiation improves anti-tumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget. 2017;8(25):41242.PubMedPubMedCentralCrossRef Kim K-J, Kim J-H, Lee SJ, Lee E-J, Shin E-C, Seong J. Radiation improves anti-tumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget. 2017;8(25):41242.PubMedPubMedCentralCrossRef
96.
go back to reference Kim KJ, Lee HW, Seong J. Combination therapy with anti-T-cell immunoglobulin and mucin-domain containing molecule 3 and radiation improves anti-tumor efficacy in murine hepatocellular carcinoma. J Gastroenterol Hepatol. 2021;36(5):1357–65.PubMedCrossRef Kim KJ, Lee HW, Seong J. Combination therapy with anti-T-cell immunoglobulin and mucin-domain containing molecule 3 and radiation improves anti-tumor efficacy in murine hepatocellular carcinoma. J Gastroenterol Hepatol. 2021;36(5):1357–65.PubMedCrossRef
98.
go back to reference Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028.PubMedCrossRef Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028.PubMedCrossRef
99.
go back to reference Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.PubMedPubMedCentralCrossRef Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.PubMedPubMedCentralCrossRef
100.
go back to reference Rosenthal R, Cadieux EL, Salgado R, Al Bakir M, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479–85.PubMedPubMedCentralCrossRef Rosenthal R, Cadieux EL, Salgado R, Al Bakir M, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479–85.PubMedPubMedCentralCrossRef
101.
go back to reference Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6(2):202–16.PubMedCrossRef Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6(2):202–16.PubMedCrossRef
102.
go back to reference Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.PubMedCrossRef Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.PubMedCrossRef
104.
go back to reference ClinicalTrials.gov. A study of nivolumab in participants with hepatocellular carcinoma who are at high risk of recurrence after curative hepatic resection or ablation (CheckMate 9DX). ClinicalTrials.gov Identifier: NCT03383458. December 26, 2017. ClinicalTrials.gov. A study of nivolumab in participants with hepatocellular carcinoma who are at high risk of recurrence after curative hepatic resection or ablation (CheckMate 9DX). ClinicalTrials.gov Identifier: NCT03383458. December 26, 2017.
105.
go back to reference ClinicalTrials.gov. Study of pembrolizumab (MK-3475) as monotherapy in participants with advanced hepatocellular carcinoma (MK-3475-224/KEYNOTE-224). ClinicalTrials.gov Identifier: NCT02702414. March 8, 2016. ClinicalTrials.gov. Study of pembrolizumab (MK-3475) as monotherapy in participants with advanced hepatocellular carcinoma (MK-3475-224/KEYNOTE-224). ClinicalTrials.gov Identifier: NCT02702414. March 8, 2016.
106.
go back to reference ClinicalTrials.gov. Study of pembrolizumab (MK-3475) vs. best supportive care in participants with previously systemically treated advanced hepatocellular carcinoma (MK-3475-240/KEYNOTE-240). ClinicalTrials.gov Identifier: NCT02702401. February 17, 2020. ClinicalTrials.gov. Study of pembrolizumab (MK-3475) vs. best supportive care in participants with previously systemically treated advanced hepatocellular carcinoma (MK-3475-240/KEYNOTE-240). ClinicalTrials.gov Identifier: NCT02702401. February 17, 2020.
107.
go back to reference ClinicalTrials.gov. Study of pembrolizumab (MK-3475) or placebo given with best supportive care in asian participants with previously treated advanced hepatocellular carcinoma (MK-3475-394/KEYNOTE-394). ClinicalTrials.gov Identifier: NCT03062358. February 23, 2017. ClinicalTrials.gov. Study of pembrolizumab (MK-3475) or placebo given with best supportive care in asian participants with previously treated advanced hepatocellular carcinoma (MK-3475-394/KEYNOTE-394). ClinicalTrials.gov Identifier: NCT03062358. February 23, 2017.
108.
go back to reference ClinicalTrials.gov. Study of the safety, pharmacokinetics and antitumor activities of BGB-A317 in participants with advanced tumors. ClinicalTrials.gov Identifier: NCT02407990. November 17, 2021. ClinicalTrials.gov. Study of the safety, pharmacokinetics and antitumor activities of BGB-A317 in participants with advanced tumors. ClinicalTrials.gov Identifier: NCT02407990. November 17, 2021.
109.
go back to reference ClinicalTrials.gov. A Phase 1/2 study to evaluate MEDI4736. ClinicalTrials.gov Identifier: NCT01693562. May 13, 2021. ClinicalTrials.gov. A Phase 1/2 study to evaluate MEDI4736. ClinicalTrials.gov Identifier: NCT01693562. May 13, 2021.
110.
go back to reference ClinicalTrials.gov. Phase II study of avelumab in patients with advanced hepatocellular carcinoma after prior sorafenib treatment (AvelumabHCC). ClinicalTrials.gov Identifier: NCT03389126. January 3, 2018. ClinicalTrials.gov. Phase II study of avelumab in patients with advanced hepatocellular carcinoma after prior sorafenib treatment (AvelumabHCC). ClinicalTrials.gov Identifier: NCT03389126. January 3, 2018.
111.
go back to reference ClinicalTrials.gov. A study of the safety and efficacy of atezolizumab administered in combination with bevacizumab and/or other treatments in participants with solid tumors. ClinicalTrials.gov Identifier: NCT02715531. March 22, 2016. ClinicalTrials.gov. A study of the safety and efficacy of atezolizumab administered in combination with bevacizumab and/or other treatments in participants with solid tumors. ClinicalTrials.gov Identifier: NCT02715531. March 22, 2016.
112.
go back to reference ClinicalTrials.gov. Study of cabozantinib in combination with atezolizumab to subjects with locally advanced or metastatic solid tumors. ClinicalTrials.gov Identifier: NCT03170960. May 31, 2017. ClinicalTrials.gov. Study of cabozantinib in combination with atezolizumab to subjects with locally advanced or metastatic solid tumors. ClinicalTrials.gov Identifier: NCT03170960. May 31, 2017.
113.
go back to reference ClinicalTrials.gov. IRX-2, cyclophosphamide, and nivolumab in treating patients with recurrent or metastatic and refractory liver cancer. ClinicalTrials.gov Identifier: NCT03655002. August 31, 2018. ClinicalTrials.gov. IRX-2, cyclophosphamide, and nivolumab in treating patients with recurrent or metastatic and refractory liver cancer. ClinicalTrials.gov Identifier: NCT03655002. August 31, 2018.
114.
go back to reference ClinicalTrials.gov. Nivolumab, fluorouracil, and interferon alpha 2B for the treatment of unresectable fibrolamellar cancer. ClinicalTrials.gov Identifier: NCT04380545. May 8, 2020. ClinicalTrials.gov. Nivolumab, fluorouracil, and interferon alpha 2B for the treatment of unresectable fibrolamellar cancer. ClinicalTrials.gov Identifier: NCT04380545. May 8, 2020.
115.
go back to reference ClinicalTrials.gov. PD-1 antibody and lenvatinib plus TACE-HAIC for potential resectable HCC: a Single-arm, Phase 2 Clinical Trial (PLATIC) ClinicalTrials.gov Identifier: NCT04814043. March 24, 2021. ClinicalTrials.gov. PD-1 antibody and lenvatinib plus TACE-HAIC for potential resectable HCC: a Single-arm, Phase 2 Clinical Trial (PLATIC) ClinicalTrials.gov Identifier: NCT04814043. March 24, 2021.
116.
go back to reference ClinicalTrials.gov. QUILT-3.055: a study of combination immunotherapies in patients who have previously received treatment with immune checkpoint inhibitors. ClinicalTrials.gov Identifier: NCT03228667. July 25, 2017. ClinicalTrials.gov. QUILT-3.055: a study of combination immunotherapies in patients who have previously received treatment with immune checkpoint inhibitors. ClinicalTrials.gov Identifier: NCT03228667. July 25, 2017.
117.
go back to reference ClinicalTrials.gov. Immune profile and prognosis of malignant liver tumors with radiofrequency ablation (RFA) therapy (RFA). ClinicalTrials.gov Identifier: NCT04707547. January 13, 2021. ClinicalTrials.gov. Immune profile and prognosis of malignant liver tumors with radiofrequency ablation (RFA) therapy (RFA). ClinicalTrials.gov Identifier: NCT04707547. January 13, 2021.
118.
go back to reference ClinicalTrials.gov. Combination of regorafenib and nivolumab in unresectable hepatocellular carcinoma (RENOBATE) ClinicalTrials.gov Identifier: NCT04310709. March 17, 2020. ClinicalTrials.gov. Combination of regorafenib and nivolumab in unresectable hepatocellular carcinoma (RENOBATE) ClinicalTrials.gov Identifier: NCT04310709. March 17, 2020.
119.
go back to reference ClinicalTrials.gov. TACE and sbrt followed by double immunotherapy for downstaging hepatocellular carcinoma ClinicalTrials.gov Identifier: NCT04988945. August 4, 2021. ClinicalTrials.gov. TACE and sbrt followed by double immunotherapy for downstaging hepatocellular carcinoma ClinicalTrials.gov Identifier: NCT04988945. August 4, 2021.
120.
go back to reference ClinicalTrials.gov. An immuno-therapy study to evaluate the effectiveness, safety and tolerability of nivolumab or nivolumab in combination with other agents in patients with advanced liver cancer (CheckMate040). ClinicalTrials.gov Identifier: NCT01658878. August 7, 2012. ClinicalTrials.gov. An immuno-therapy study to evaluate the effectiveness, safety and tolerability of nivolumab or nivolumab in combination with other agents in patients with advanced liver cancer (CheckMate040). ClinicalTrials.gov Identifier: NCT01658878. August 7, 2012.
121.
go back to reference ClinicalTrials.gov. An investigational immuno-therapy study of nivolumab compared to sorafenib as a first treatment in patients with advanced hepatocellular carcinoma. ClinicalTrials.gov Identifier: NCT02576509. June 26, 2020. ClinicalTrials.gov. An investigational immuno-therapy study of nivolumab compared to sorafenib as a first treatment in patients with advanced hepatocellular carcinoma. ClinicalTrials.gov Identifier: NCT02576509. June 26, 2020.
122.
go back to reference ClinicalTrials.gov. Phase 3 study of tislelizumab versus sorafenib in participants with unresectable HCC. ClinicalTrials.gov Identifier: NCT03412773. January 26, 2018. ClinicalTrials.gov. Phase 3 study of tislelizumab versus sorafenib in participants with unresectable HCC. ClinicalTrials.gov Identifier: NCT03412773. January 26, 2018.
123.
go back to reference ClinicalTrials.gov. Transarterial infusion of PD-1 antibody plus TACE-HAIC for unresectable HCC: a single-arm, phase 2 clinical Trial (AIPD-1) ClinicalTrials.gov Identifier: NCT04814030. March 24, 2021. ClinicalTrials.gov. Transarterial infusion of PD-1 antibody plus TACE-HAIC for unresectable HCC: a single-arm, phase 2 clinical Trial (AIPD-1) ClinicalTrials.gov Identifier: NCT04814030. March 24, 2021.
124.
125.
go back to reference Cheng A-L, Hsu C, Chan SL, Choo S-P, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72(2):307–19.PubMedCrossRef Cheng A-L, Hsu C, Chan SL, Choo S-P, Kudo M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 2020;72(2):307–19.PubMedCrossRef
126.
go back to reference Lai X, Friedman A. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model. PLoS ONE. 2017;12(5):e0178479.PubMedPubMedCentralCrossRef Lai X, Friedman A. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model. PLoS ONE. 2017;12(5):e0178479.PubMedPubMedCentralCrossRef
127.
go back to reference Abu-Sbeih H, Ali FS, Wang X, Mallepally N, Chen E, Altan M, Bresalier RS, Charabaty A, Dadu R, Jazaeri A. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor–induced colitis. J Immunother Cancer. 2019;7(1):1–11.CrossRef Abu-Sbeih H, Ali FS, Wang X, Mallepally N, Chen E, Altan M, Bresalier RS, Charabaty A, Dadu R, Jazaeri A. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor–induced colitis. J Immunother Cancer. 2019;7(1):1–11.CrossRef
Metadata
Title
A comprehensive review about the utilization of immune checkpoint inhibitors and combination therapy in hepatocellular carcinoma: an updated review
Authors
Faezeh Sharafi
Sadegh Abaei Hasani
Samira Alesaeidi
Mohammad Saeed Kahrizi
Ali Adili
Shadi Ghoreishizadeh
Navid Shomali
Rozita Tamjidifar
Ramin Aslaminabad
Morteza Akbari
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02682-z

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine