Skip to main content
Top
Published in: Clinical and Experimental Medicine 3/2016

01-08-2016 | Review Article

Hepatitis viruses exploitation of host DNA methyltransferases functions

Authors: Valerio Pazienza, Concetta Panebianco, Angelo Andriulli

Published in: Clinical and Experimental Medicine | Issue 3/2016

Login to get access

Abstract

Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell’s pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.
Literature
1.
go back to reference Wasley A, Grytdal S, Gallagher K. Surveillance for acute viral hepatitis–United States, 2006. MMWR Surveill Summ. 2008;57(2):1–24.PubMed Wasley A, Grytdal S, Gallagher K. Surveillance for acute viral hepatitis–United States, 2006. MMWR Surveill Summ. 2008;57(2):1–24.PubMed
2.
go back to reference Larrubia JR, et al. Persistent hepatitis C virus (HCV) infection impairs HCV-specific cytotoxic T cell reactivity through Mcl-1/Bim imbalance due to CD127 down-regulation. J Viral Hepat. 2012;20(2):85–94.PubMedCrossRef Larrubia JR, et al. Persistent hepatitis C virus (HCV) infection impairs HCV-specific cytotoxic T cell reactivity through Mcl-1/Bim imbalance due to CD127 down-regulation. J Viral Hepat. 2012;20(2):85–94.PubMedCrossRef
3.
go back to reference Thomas MB, et al. Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2010;28(25):3994–4005.PubMedPubMedCentralCrossRef Thomas MB, et al. Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2010;28(25):3994–4005.PubMedPubMedCentralCrossRef
4.
go back to reference Jemal A, et al. Trends in the leading causes of death in the United States, 1970–2002. JAMA. 2005;294(10):1255–9.PubMedCrossRef Jemal A, et al. Trends in the leading causes of death in the United States, 1970–2002. JAMA. 2005;294(10):1255–9.PubMedCrossRef
5.
go back to reference Llovet JM, Beaugrand M. Hepatocellular carcinoma: present status and future prospects. J Hepatol. 2003;38(Suppl 1):S136–49.PubMedCrossRef Llovet JM, Beaugrand M. Hepatocellular carcinoma: present status and future prospects. J Hepatol. 2003;38(Suppl 1):S136–49.PubMedCrossRef
6.
go back to reference Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.PubMedCrossRef Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.PubMedCrossRef
9.
go back to reference Kew MC, et al. Does delta infection play a part in the pathogenesis of hepatitis B virus related hepatocellular carcinoma? Br Med J (Clin Res Ed). 1984;288(6432):1727.CrossRef Kew MC, et al. Does delta infection play a part in the pathogenesis of hepatitis B virus related hepatocellular carcinoma? Br Med J (Clin Res Ed). 1984;288(6432):1727.CrossRef
10.
go back to reference Romeo R, et al. A 28-year study of the course of hepatitis delta infection: a risk factor for cirrhosis and hepatocellular carcinoma. Gastroenterology. 2009;136(5):1629–38.PubMedCrossRef Romeo R, et al. A 28-year study of the course of hepatitis delta infection: a risk factor for cirrhosis and hepatocellular carcinoma. Gastroenterology. 2009;136(5):1629–38.PubMedCrossRef
11.
go back to reference Verme G, et al. Role of hepatitis delta virus infection in hepatocellular carcinoma. Dig Dis Sci. 1991;36(8):1134–6.PubMedCrossRef Verme G, et al. Role of hepatitis delta virus infection in hepatocellular carcinoma. Dig Dis Sci. 1991;36(8):1134–6.PubMedCrossRef
14.
go back to reference Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene. 2000;19(3):468–71.PubMedCrossRef Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene. 2000;19(3):468–71.PubMedCrossRef
15.
go back to reference Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006;25(27):3834–47.PubMedCrossRef Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006;25(27):3834–47.PubMedCrossRef
16.
go back to reference Li C, et al. Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol. 2012;87(4):2193–205.PubMedCrossRef Li C, et al. Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol. 2012;87(4):2193–205.PubMedCrossRef
17.
go back to reference Liu H, et al. Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein. Cancer Sci. 2012;103(12):2072–81.PubMedCrossRef Liu H, et al. Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein. Cancer Sci. 2012;103(12):2072–81.PubMedCrossRef
18.
go back to reference Ripoli M, et al. Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein. Virus Res. 2011;160(1–2):74–81.PubMedCrossRef Ripoli M, et al. Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein. Virus Res. 2011;160(1–2):74–81.PubMedCrossRef
19.
go back to reference Tan A, et al. Viral hepatocarcinogenesis: from infection to cancer. Liver Int. 2008;28(2):175–88.PubMedCrossRef Tan A, et al. Viral hepatocarcinogenesis: from infection to cancer. Liver Int. 2008;28(2):175–88.PubMedCrossRef
20.
go back to reference Buhler S, Bartenschlager R. Promotion of hepatocellular carcinoma by hepatitis C virus. Dig Dis. 2012;30(5):445–52.PubMedCrossRef Buhler S, Bartenschlager R. Promotion of hepatocellular carcinoma by hepatitis C virus. Dig Dis. 2012;30(5):445–52.PubMedCrossRef
21.
go back to reference Li HP, Leu YW, Chang YS. Epigenetic changes in virus-associated human cancers. Cell Res. 2005;15(4):262–71.PubMedCrossRef Li HP, Leu YW, Chang YS. Epigenetic changes in virus-associated human cancers. Cell Res. 2005;15(4):262–71.PubMedCrossRef
22.
go back to reference Stein RA. Epigenetics–the link between infectious diseases and cancer. JAMA. 2011;305(14):1484–5.PubMedCrossRef Stein RA. Epigenetics–the link between infectious diseases and cancer. JAMA. 2011;305(14):1484–5.PubMedCrossRef
23.
go back to reference Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.PubMedCrossRef Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.PubMedCrossRef
25.
go back to reference Irizarry RA, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.PubMedPubMedCentralCrossRef Irizarry RA, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.PubMedPubMedCentralCrossRef
26.
go back to reference Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRef Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRef
27.
go back to reference Kulis M, et al. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161–74.PubMedCrossRef Kulis M, et al. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161–74.PubMedCrossRef
29.
go back to reference Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13(8):335–40.PubMedCrossRef Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13(8):335–40.PubMedCrossRef
31.
go back to reference Chan AO, Rashid A. CpG island methylation in precursors of gastrointestinal malignancies. Curr Mol Med. 2006;6(4):401–8.PubMedCrossRef Chan AO, Rashid A. CpG island methylation in precursors of gastrointestinal malignancies. Curr Mol Med. 2006;6(4):401–8.PubMedCrossRef
32.
go back to reference Smith SS, et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci USA. 1992;89(10):4744–8.PubMedPubMedCentralCrossRef Smith SS, et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci USA. 1992;89(10):4744–8.PubMedPubMedCentralCrossRef
34.
go back to reference Rhee I, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–6.PubMedCrossRef Rhee I, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–6.PubMedCrossRef
35.
go back to reference Chedin F, Lieber MR, Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA. 2002;99(26):16916–21.PubMedPubMedCentralCrossRef Chedin F, Lieber MR, Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA. 2002;99(26):16916–21.PubMedPubMedCentralCrossRef
36.
go back to reference Suetake I, et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279(26):27816–23.PubMedCrossRef Suetake I, et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279(26):27816–23.PubMedCrossRef
37.
go back to reference Bourc’his D, et al. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9.PubMedCrossRef Bourc’his D, et al. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9.PubMedCrossRef
38.
go back to reference Hata K, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.PubMed Hata K, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.PubMed
39.
go back to reference Neri F, et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013;155(1):121–34.PubMedCrossRef Neri F, et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013;155(1):121–34.PubMedCrossRef
40.
go back to reference Ezzikouri S, et al. Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population. Infect Genet Evol. 2009;9(5):877–81.PubMedCrossRef Ezzikouri S, et al. Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population. Infect Genet Evol. 2009;9(5):877–81.PubMedCrossRef
41.
go back to reference O’Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 2008;4(8):e1000155.PubMedPubMedCentralCrossRef O’Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 2008;4(8):e1000155.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Kay A, Zoulim F. Hepatitis B virus genetic variability and evolution. Virus Res. 2007;127(2):164–76.PubMedCrossRef Kay A, Zoulim F. Hepatitis B virus genetic variability and evolution. Virus Res. 2007;127(2):164–76.PubMedCrossRef
46.
go back to reference Thomas HC, Carman WF. The host immune response may be responsible for selection of envelope and precore/core variants of HBV. Prog Liver Dis. 1992;10:239–51.PubMed Thomas HC, Carman WF. The host immune response may be responsible for selection of envelope and precore/core variants of HBV. Prog Liver Dis. 1992;10:239–51.PubMed
47.
go back to reference Guo Y, et al. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions. BMC Genom. 2012;13:563.CrossRef Guo Y, et al. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions. BMC Genom. 2012;13:563.CrossRef
48.
go back to reference Rossner MT. Review: hepatitis B virus X-gene product: a promiscuous transcriptional activator. J Med Virol. 1992;36(2):101–17.PubMedCrossRef Rossner MT. Review: hepatitis B virus X-gene product: a promiscuous transcriptional activator. J Med Virol. 1992;36(2):101–17.PubMedCrossRef
49.
go back to reference Madden CR, Slagle BL. Stimulation of cellular proliferation by hepatitis B virus X protein. Dis Markers. 2001;17(3):153–7.PubMedCrossRef Madden CR, Slagle BL. Stimulation of cellular proliferation by hepatitis B virus X protein. Dis Markers. 2001;17(3):153–7.PubMedCrossRef
50.
go back to reference Su PF, et al. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer. 2007;121(6):1257–64.PubMedCrossRef Su PF, et al. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer. 2007;121(6):1257–64.PubMedCrossRef
51.
go back to reference Zhong S, et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res. 2002;8(4):1087–92.PubMed Zhong S, et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res. 2002;8(4):1087–92.PubMed
53.
54.
go back to reference Lambert MP, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54(4):705–15.PubMedCrossRef Lambert MP, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54(4):705–15.PubMedCrossRef
55.
go back to reference Um TH, et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2010;54(5):939–47.PubMedCrossRef Um TH, et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2010;54(5):939–47.PubMedCrossRef
56.
go back to reference Feng Q, et al. DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection. Exp Mol Pathol. 2010;88(2):287–92.PubMedPubMedCentralCrossRef Feng Q, et al. DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection. Exp Mol Pathol. 2010;88(2):287–92.PubMedPubMedCentralCrossRef
57.
go back to reference Jung JK, et al. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 2007;67(12):5771–8.PubMedCrossRef Jung JK, et al. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 2007;67(12):5771–8.PubMedCrossRef
58.
go back to reference Park IY, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007;132(4):1476–94.PubMedCrossRef Park IY, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007;132(4):1476–94.PubMedCrossRef
59.
go back to reference Kim YJ, et al. Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16(INK4a) expression via DNA methylation. Cancer Lett. 2010;288(2):226–35.PubMedCrossRef Kim YJ, et al. Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16(INK4a) expression via DNA methylation. Cancer Lett. 2010;288(2):226–35.PubMedCrossRef
60.
go back to reference Lee SM, et al. HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proc Natl Acad Sci USA. 2014;111(26):9555–60.PubMedPubMedCentralCrossRef Lee SM, et al. HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proc Natl Acad Sci USA. 2014;111(26):9555–60.PubMedPubMedCentralCrossRef
61.
go back to reference Fan H, et al. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2015. doi:10.1038/onc.2015.122 Fan H, et al. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2015. doi:10.​1038/​onc.​2015.​122
62.
go back to reference Pazienza V, et al. Hepatitis C virus core protein genotype 3a increases SOCS-7 expression through PPAR-γ in Huh-7 cells. J Gen Virol. 2010;91(Pt 7):1678–86.PubMedCrossRef Pazienza V, et al. Hepatitis C virus core protein genotype 3a increases SOCS-7 expression through PPAR-γ in Huh-7 cells. J Gen Virol. 2010;91(Pt 7):1678–86.PubMedCrossRef
63.
go back to reference Liu R, et al. In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease. J Antimicrob Chemother. 2007;59(1):51–8.PubMedCrossRef Liu R, et al. In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease. J Antimicrob Chemother. 2007;59(1):51–8.PubMedCrossRef
64.
go back to reference Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis. 2005;5(9):558–67.PubMedCrossRef Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis. 2005;5(9):558–67.PubMedCrossRef
65.
go back to reference Simmonds P, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol. 1993;74(Pt 11):2391–9.PubMedCrossRef Simmonds P, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol. 1993;74(Pt 11):2391–9.PubMedCrossRef
66.
go back to reference Abid K, et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. J Hepatol. 2005;42(5):744–51.PubMedCrossRef Abid K, et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. J Hepatol. 2005;42(5):744–51.PubMedCrossRef
67.
go back to reference Barba G, et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA. 1997;94(4):1200–5.PubMedPubMedCentralCrossRef Barba G, et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA. 1997;94(4):1200–5.PubMedPubMedCentralCrossRef
68.
go back to reference Moriya K, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4(9):1065–7.PubMedCrossRef Moriya K, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4(9):1065–7.PubMedCrossRef
69.
go back to reference Pazienza V, et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology. 2007;45(5):1164–71.PubMedCrossRef Pazienza V, et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology. 2007;45(5):1164–71.PubMedCrossRef
70.
go back to reference Nishise Y, et al. Risk of hepatocellular carcinoma and secondary structure of hepatitis C virus (HCV) NS3 protein amino-terminus, in patients infected with HCV subtype 1b. J Infect Dis. 2007;196(7):1006–9.PubMedCrossRef Nishise Y, et al. Risk of hepatocellular carcinoma and secondary structure of hepatitis C virus (HCV) NS3 protein amino-terminus, in patients infected with HCV subtype 1b. J Infect Dis. 2007;196(7):1006–9.PubMedCrossRef
71.
go back to reference Ripoli M, Pazienza V. Impact of HCV genetic differences on pathobiology of disease. Expert Rev Anti Infect Ther. 2011;9(9):747–59.PubMedCrossRef Ripoli M, Pazienza V. Impact of HCV genetic differences on pathobiology of disease. Expert Rev Anti Infect Ther. 2011;9(9):747–59.PubMedCrossRef
72.
go back to reference Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett. 1998;438(3):258–62.PubMedCrossRef Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett. 1998;438(3):258–62.PubMedCrossRef
73.
go back to reference Basu A, et al. Microarray analyses and molecular profiling of Stat3 signaling pathway induced by hepatitis C virus core protein in human hepatocytes. Virology. 2006;349(2):347–58.PubMedCrossRef Basu A, et al. Microarray analyses and molecular profiling of Stat3 signaling pathway induced by hepatitis C virus core protein in human hepatocytes. Virology. 2006;349(2):347–58.PubMedCrossRef
74.
go back to reference Ray RB, et al. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 1995;37(3):209–20.PubMedCrossRef Ray RB, et al. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 1995;37(3):209–20.PubMedCrossRef
75.
go back to reference Hayashi J, et al. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 2000;32(5):958–61.PubMedCrossRef Hayashi J, et al. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 2000;32(5):958–61.PubMedCrossRef
76.
go back to reference Formeister EJ, et al. Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. Mutat Res. 2010;692(1–2):26–33.PubMedPubMedCentralCrossRef Formeister EJ, et al. Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. Mutat Res. 2010;692(1–2):26–33.PubMedPubMedCentralCrossRef
77.
go back to reference Arora P, et al. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261(2):244–52.PubMedCrossRef Arora P, et al. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261(2):244–52.PubMedCrossRef
78.
go back to reference Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol. 1993;5(5):806–11.PubMedCrossRef Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol. 1993;5(5):806–11.PubMedCrossRef
79.
go back to reference Benegiamo G, et al. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598–603.PubMedCrossRef Benegiamo G, et al. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598–603.PubMedCrossRef
80.
go back to reference Chen C, et al. DNA methyltransferases 1 and 3B are required for hepatitis C virus infection in cell culture. Virology. 2013;441(1):57–65.PubMedCrossRef Chen C, et al. DNA methyltransferases 1 and 3B are required for hepatitis C virus infection in cell culture. Virology. 2013;441(1):57–65.PubMedCrossRef
81.
82.
go back to reference Elena SF, et al. Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA. Proc Natl Acad Sci USA. 1991;88(13):5631–4.PubMedPubMedCentralCrossRef Elena SF, et al. Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA. Proc Natl Acad Sci USA. 1991;88(13):5631–4.PubMedPubMedCentralCrossRef
83.
go back to reference Sureau C. The role of the HBV envelope proteins in the HDV replication cycle. Curr Top Microbiol Immunol. 2006;307:113–31.PubMed Sureau C. The role of the HBV envelope proteins in the HDV replication cycle. Curr Top Microbiol Immunol. 2006;307:113–31.PubMed
84.
go back to reference Weiner AJ, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol. 1988;62(2):594–9.PubMedPubMedCentral Weiner AJ, et al. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol. 1988;62(2):594–9.PubMedPubMedCentral
85.
go back to reference Niro GA, Gioffreda D, Fontana R. Hepatitis delta virus infection: open issues. Dig Liver Dis. 2011;43(Suppl 1):S19–24.PubMedCrossRef Niro GA, Gioffreda D, Fontana R. Hepatitis delta virus infection: open issues. Dig Liver Dis. 2011;43(Suppl 1):S19–24.PubMedCrossRef
86.
go back to reference Li YJ, Stallcup MR, Lai MM. Hepatitis delta virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J Virol. 2004;78(23):13325–34.PubMedPubMedCentralCrossRef Li YJ, Stallcup MR, Lai MM. Hepatitis delta virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J Virol. 2004;78(23):13325–34.PubMedPubMedCentralCrossRef
87.
go back to reference Benegiamo G, et al. Hepatitis delta virus induces specific DNA methylation processes in Huh-7 liver cancer cells. FEBS Lett. 2013;587(9):1424–8.PubMedCrossRef Benegiamo G, et al. Hepatitis delta virus induces specific DNA methylation processes in Huh-7 liver cancer cells. FEBS Lett. 2013;587(9):1424–8.PubMedCrossRef
88.
go back to reference Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med. 2012;4(1):8.PubMedPubMedCentralCrossRef Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med. 2012;4(1):8.PubMedPubMedCentralCrossRef
89.
go back to reference Bae SI, et al. Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene. 2008;27(4):490–8.PubMedCrossRef Bae SI, et al. Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene. 2008;27(4):490–8.PubMedCrossRef
90.
go back to reference Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 2010;51(3):881–90.PubMedPubMedCentral Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 2010;51(3):881–90.PubMedPubMedCentral
91.
go back to reference McGough JM, et al. DNA methylation represses IFN-γ-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol Cancer Res. 2008;6(12):1841–51.PubMedPubMedCentral McGough JM, et al. DNA methylation represses IFN-γ-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol Cancer Res. 2008;6(12):1841–51.PubMedPubMedCentral
92.
go back to reference Meng F, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene. 2008;27(3):378–86.PubMedCrossRef Meng F, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene. 2008;27(3):378–86.PubMedCrossRef
93.
go back to reference Reu FJ, et al. Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res. 2006;66(5):2785–93.PubMedPubMedCentralCrossRef Reu FJ, et al. Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res. 2006;66(5):2785–93.PubMedPubMedCentralCrossRef
94.
go back to reference You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 2010;51(5):1635–44.PubMedPubMedCentralCrossRef You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 2010;51(5):1635–44.PubMedPubMedCentralCrossRef
95.
go back to reference Scheller J, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.PubMedCrossRef Scheller J, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.PubMedCrossRef
96.
go back to reference Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol. 2014;44(4):1032–40.PubMed Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol. 2014;44(4):1032–40.PubMed
97.
go back to reference Johnson C, et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest Cancer. 2012;1(1):58–70.PubMedPubMedCentral Johnson C, et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest Cancer. 2012;1(1):58–70.PubMedPubMedCentral
98.
go back to reference Hodge DR, et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4(6):387–98.PubMed Hodge DR, et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4(6):387–98.PubMed
99.
go back to reference Wrana JL, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992;71(6):1003–14.PubMedCrossRef Wrana JL, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992;71(6):1003–14.PubMedCrossRef
100.
go back to reference Panebianco C, Saracino C, Pazienza V. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression. Tumour Biol. 2014;35(8):7307–15.PubMedCrossRef Panebianco C, Saracino C, Pazienza V. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression. Tumour Biol. 2014;35(8):7307–15.PubMedCrossRef
101.
102.
go back to reference Matsumura N, et al. Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 2011;21(1):74–82.PubMedPubMedCentralCrossRef Matsumura N, et al. Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 2011;21(1):74–82.PubMedPubMedCentralCrossRef
103.
go back to reference Zhang Q, et al. TGF-beta regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence. PLoS One. 2011;6(9):e25168.PubMedPubMedCentralCrossRef Zhang Q, et al. TGF-beta regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence. PLoS One. 2011;6(9):e25168.PubMedPubMedCentralCrossRef
104.
105.
go back to reference Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.PubMedCrossRef Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.PubMedCrossRef
106.
go back to reference Pugnale P, et al. Hepatitis delta virus inhibits alpha interferon signaling. Hepatology. 2009;49(2):398–406.PubMedCrossRef Pugnale P, et al. Hepatitis delta virus inhibits alpha interferon signaling. Hepatology. 2009;49(2):398–406.PubMedCrossRef
107.
go back to reference Chun JY, et al. Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection. BMB Rep. 2009;42(12):834–9.PubMedCrossRef Chun JY, et al. Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection. BMB Rep. 2009;42(12):834–9.PubMedCrossRef
108.
go back to reference Shervington A, Patel R. Silencing DNA methyltransferase (DNMT) enhances glioma chemosensitivity. Oligonucleotides. 2008;18(4):365–74.PubMedCrossRef Shervington A, Patel R. Silencing DNA methyltransferase (DNMT) enhances glioma chemosensitivity. Oligonucleotides. 2008;18(4):365–74.PubMedCrossRef
109.
go back to reference Suzuki M, et al. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res. 2004;64(9):3137–43.PubMedCrossRef Suzuki M, et al. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res. 2004;64(9):3137–43.PubMedCrossRef
110.
go back to reference Yamanaka K, et al. Gene silencing of DNA methyltransferases by RNA interference in bovine fibroblast cells. J Reprod Dev. 2010;56(1):60–7.PubMedCrossRef Yamanaka K, et al. Gene silencing of DNA methyltransferases by RNA interference in bovine fibroblast cells. J Reprod Dev. 2010;56(1):60–7.PubMedCrossRef
111.
go back to reference Brueckner B, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65(14):6305–11.PubMedCrossRef Brueckner B, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65(14):6305–11.PubMedCrossRef
112.
go back to reference Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–95.PubMedCrossRef Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–95.PubMedCrossRef
114.
go back to reference Schirrmacher E, et al. Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem. 2006;17(2):261–6.PubMedCrossRef Schirrmacher E, et al. Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem. 2006;17(2):261–6.PubMedCrossRef
115.
go back to reference Segura-Pacheco B, et al. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med. 2006;4:32.PubMedPubMedCentralCrossRef Segura-Pacheco B, et al. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med. 2006;4:32.PubMedPubMedCentralCrossRef
116.
go back to reference Liu X, et al. Hepatitis B virus DNA-induced carcinogenesis of human normal liver cells by virtue of non-methylated CpG DNA. Oncol Rep. 2009;21(4):941–7.PubMed Liu X, et al. Hepatitis B virus DNA-induced carcinogenesis of human normal liver cells by virtue of non-methylated CpG DNA. Oncol Rep. 2009;21(4):941–7.PubMed
Metadata
Title
Hepatitis viruses exploitation of host DNA methyltransferases functions
Authors
Valerio Pazienza
Concetta Panebianco
Angelo Andriulli
Publication date
01-08-2016
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 3/2016
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-015-0372-3

Other articles of this Issue 3/2016

Clinical and Experimental Medicine 3/2016 Go to the issue