Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Hepatitis C | Research

miR-27b-mediated suppression of aquaporin-11 expression in hepatocytes reduces HCV genomic RNA levels but not viral titers

Authors: Fuminori Sakurai, Rina Hashimoto, Chieko Inoue, Keisaku Wakabayashi, Tomohito Tsukamoto, Tsutomu Imaizumi, Taracena Gandara Marcos Andres, Eiko Sakai, Kanae Itsuki, Naoya Sakamoto, Takaji Wakita, Hiroyuki Mizuguchi

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

MicroRNAs (miRNAs) have gained much attention as cellular factors regulating hepatitis C virus (HCV) infection. miR-27b has been shown to regulate HCV infection in the hepatocytes via various mechanisms that have not been fully elucidated. In this study, therefore, we examined the mechanisms of miR-27b-mediated regulation of HCV infection.

Methods

In silico screening analysis, transfection with miR-27b mimic, and a cell-based reporter assay were performed to identify miR-27b target genes. Cell cultured-derived HCV (HCVcc) was added to Huh7.5.1 cells knocked down for aquaporin (AQP) 11 (AQP11) and overexpressing AQP11. HCV replication levels were evaluated by real-time RT-PCR analysis of HCVcc genome.

Results

Infection of Huh7.5.1 cells with HCVcc resulted in significant elevation in miR-27b expression levels. In silico analysis revealed that AQP11, which is an AQP family member and is mainly localized in the endoplasmic reticulum (ER), was a candidate for a target gene of miR-27b. Transfection of a miR-27b mimic significantly reduced AQP11 expression, but a cell-based reporter assay demonstrated that miR-27b did not suppress the expression of a reporter gene containing the 3′-untranslated region of the AQP11 gene, suggesting that miR-27b indirectly suppressed AQP11 expression. AQP11 expression levels were significantly reduced by infection with HCVcc in Huh7.5.1 cells. Knockdown and over-expression of AQP11 significantly reduced and increased HCVcc genome levels in the cells following infection, respectively, however, AQP11 knockdown did not show significant effects on the HCVcc titers in the culture supernatants.

Conclusions

These results indicated that HCV infection induced a miR-27b-mediated reduction in AQP11 expression, leading to a modest reduction in HCV genome levels in the cells, not HCV titers in the culture supernatants.
Literature
1.
go back to reference Spengler U. Direct antiviral agents (DAAs) - a new age in the treatment of hepatitis C virus infection. Pharmacol Ther. 2018;183:118–26.CrossRef Spengler U. Direct antiviral agents (DAAs) - a new age in the treatment of hepatitis C virus infection. Pharmacol Ther. 2018;183:118–26.CrossRef
2.
go back to reference Sarrazin C, Cooper CL, Manns MP, Reddy KR, Kowdley KV, et al. No impact of resistance-associated substitutions on the efficacy of sofosbuvir, velpatasvir, and voxilaprevir for 12weeks in HCV DAA-experienced patients. J Hepatol. 2018;69(6):1221–30.CrossRef Sarrazin C, Cooper CL, Manns MP, Reddy KR, Kowdley KV, et al. No impact of resistance-associated substitutions on the efficacy of sofosbuvir, velpatasvir, and voxilaprevir for 12weeks in HCV DAA-experienced patients. J Hepatol. 2018;69(6):1221–30.CrossRef
3.
go back to reference Zhang Y, Cao Y, Zhang R, Zhang X, Lu H, et al. Pre-existing HCV variants resistant to DAAs and their sensitivity to PegIFN/RBV in Chinese HCV genotype 1b patients. PLoS One. 2016;11(11):e0165658.CrossRef Zhang Y, Cao Y, Zhang R, Zhang X, Lu H, et al. Pre-existing HCV variants resistant to DAAs and their sensitivity to PegIFN/RBV in Chinese HCV genotype 1b patients. PLoS One. 2016;11(11):e0165658.CrossRef
4.
go back to reference Ito J, Suda G, Yamamoto Y, Nagasaka A, Furuya K, et al. Prevalence and characteristics of naturally occurring sofosbuvir resistance-associated variants in patients with hepatitis C virus genotype 1b infection. Hepatol Res. 2016;46(13):1294–303.CrossRef Ito J, Suda G, Yamamoto Y, Nagasaka A, Furuya K, et al. Prevalence and characteristics of naturally occurring sofosbuvir resistance-associated variants in patients with hepatitis C virus genotype 1b infection. Hepatol Res. 2016;46(13):1294–303.CrossRef
5.
go back to reference Lee CH, Kim JH, Lee SW. The role of microRNAs in hepatitis C virus replication and related liver diseases. J Microbiol. 2014;52(6):445–51.CrossRef Lee CH, Kim JH, Lee SW. The role of microRNAs in hepatitis C virus replication and related liver diseases. J Microbiol. 2014;52(6):445–51.CrossRef
6.
go back to reference Kumar A. MicroRNA in HCV infection and liver cancer. Biochim Biophys Acta. 2011;1809(11–12):694–9.CrossRef Kumar A. MicroRNA in HCV infection and liver cancer. Biochim Biophys Acta. 2011;1809(11–12):694–9.CrossRef
7.
go back to reference Shrivastava S, Steele R, Ray R, Ray RB. MicroRNAs: role in hepatitis C virus pathogenesis. Genes Dis. 2015;2(1):35–45.CrossRef Shrivastava S, Steele R, Ray R, Ray RB. MicroRNAs: role in hepatitis C virus pathogenesis. Genes Dis. 2015;2(1):35–45.CrossRef
8.
go back to reference Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–81.CrossRef Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–81.CrossRef
9.
go back to reference Singaravelu R, Chen R, Lyn RK, Jones DM, O’Hara S, et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59(1):98–108.CrossRef Singaravelu R, Chen R, Lyn RK, Jones DM, O’Hara S, et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59(1):98–108.CrossRef
10.
go back to reference Li S, Duan X, Li Y, Liu B, McGilvray I, et al. MicroRNA-130a inhibits HCV replication by restoring the innate immune response. J Viral Hepat. 2014;21(2):121–8.CrossRef Li S, Duan X, Li Y, Liu B, McGilvray I, et al. MicroRNA-130a inhibits HCV replication by restoring the innate immune response. J Viral Hepat. 2014;21(2):121–8.CrossRef
11.
go back to reference Li GY, Zhou Y, Ying RS, Shi L, Cheng YQ, et al. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology. 2015;61(4):1163–73.CrossRef Li GY, Zhou Y, Ying RS, Shi L, Cheng YQ, et al. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology. 2015;61(4):1163–73.CrossRef
12.
go back to reference Shwetha S, Sharma G, Raheja H, Goel A, Aggarwal R, et al. Interaction of miR-125b-5p with human antigen R mRNA: mechanism of controlling HCV replication. Virus Res. 2018;258:1–8.CrossRef Shwetha S, Sharma G, Raheja H, Goel A, Aggarwal R, et al. Interaction of miR-125b-5p with human antigen R mRNA: mechanism of controlling HCV replication. Virus Res. 2018;258:1–8.CrossRef
13.
go back to reference Bandiera S, Pernot S, El Saghire H, Durand SC, Thumann C, et al. Hepatitis C virus-induced Upregulation of MicroRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. J Virol. 2016;90(14):6387–400.CrossRef Bandiera S, Pernot S, El Saghire H, Durand SC, Thumann C, et al. Hepatitis C virus-induced Upregulation of MicroRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. J Virol. 2016;90(14):6387–400.CrossRef
14.
go back to reference Kida K, Nakajima M, Mohri T, Oda Y, Takagi S, et al. PPARalpha is regulated by miR-21 and miR-27b in human liver. Pharm Res. 2011;28(10):2467–76.CrossRef Kida K, Nakajima M, Mohri T, Oda Y, Takagi S, et al. PPARalpha is regulated by miR-21 and miR-27b in human liver. Pharm Res. 2011;28(10):2467–76.CrossRef
15.
go back to reference Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol. 2013;87(9):5270–86.CrossRef Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol. 2013;87(9):5270–86.CrossRef
16.
go back to reference Sun HY, Lin CC, Tsai PJ, Tsai WJ, Lee JC, et al. Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent hepatic lipid accumulation. Cell Microbiol. 2017;19(4):e12673. Sun HY, Lin CC, Tsai PJ, Tsai WJ, Lee JC, et al. Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent hepatic lipid accumulation. Cell Microbiol. 2017;19(4):e12673.
17.
go back to reference Yokota T, Sakamoto N, Enomoto N, Tanabe Y, Miyagishi M, et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep. 2003;4(6):602–8.CrossRef Yokota T, Sakamoto N, Enomoto N, Tanabe Y, Miyagishi M, et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep. 2003;4(6):602–8.CrossRef
18.
go back to reference Sakurai F, Kunito T, Takayama K, Hashimoto R, Tachibana M, et al. Hepatitis C virus-induced innate immune responses in human iPS cell-derived hepatocyte-like cells. Virus Res. 2017;242:7–15.CrossRef Sakurai F, Kunito T, Takayama K, Hashimoto R, Tachibana M, et al. Hepatitis C virus-induced innate immune responses in human iPS cell-derived hepatocyte-like cells. Virus Res. 2017;242:7–15.CrossRef
19.
go back to reference Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
20.
go back to reference Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.PubMed Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.PubMed
21.
go back to reference Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.CrossRef Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.CrossRef
22.
go back to reference Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, et al. The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem. 2011;286(5):3342–50.CrossRef Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, et al. The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem. 2011;286(5):3342–50.CrossRef
23.
go back to reference Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol. 2005;25(17):7770–9.CrossRef Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol. 2005;25(17):7770–9.CrossRef
24.
go back to reference Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8(12):e1003056.CrossRef Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8(12):e1003056.CrossRef
25.
go back to reference Goedeke L, Rotllan N, Ramirez CM, Aranda JF, Canfran-Duque A, et al. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis. 2015;243(2):499–509.CrossRef Goedeke L, Rotllan N, Ramirez CM, Aranda JF, Canfran-Duque A, et al. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis. 2015;243(2):499–509.CrossRef
26.
go back to reference Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, et al. Plant and mammal Aquaporins: same but different. Int J Mol Sci. 2018;19(2):521. Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, et al. Plant and mammal Aquaporins: same but different. Int J Mol Sci. 2018;19(2):521.
27.
go back to reference Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. Adv Exp Med Biol. 2010;679:1–17.CrossRef Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. Adv Exp Med Biol. 2010;679:1–17.CrossRef
28.
go back to reference Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, et al. Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J. 2008;22(10):3672–84.CrossRef Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, et al. Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J. 2008;22(10):3672–84.CrossRef
29.
go back to reference Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, et al. Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol. 2013;304(10):F1295–307.CrossRef Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, et al. Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol. 2013;304(10):F1295–307.CrossRef
30.
go back to reference Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, et al. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity (Silver Spring). 2014;22(9):2010–7.CrossRef Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, et al. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity (Silver Spring). 2014;22(9):2010–7.CrossRef
31.
go back to reference Rojek A, Fuchtbauer EM, Fuchtbauer A, Jelen S, Malmendal A, et al. Liver-specific aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. Am J Physiol Gastrointest Liver Physiol. 2013;304(5):G501–15.CrossRef Rojek A, Fuchtbauer EM, Fuchtbauer A, Jelen S, Malmendal A, et al. Liver-specific aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. Am J Physiol Gastrointest Liver Physiol. 2013;304(5):G501–15.CrossRef
32.
go back to reference Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141(5):799–811.CrossRef Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141(5):799–811.CrossRef
33.
go back to reference Miyanari Y, Hijikata M, Yamaji M, Hosaka M, Takahashi H, et al. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem. 2003;278(50):50301–8.CrossRef Miyanari Y, Hijikata M, Yamaji M, Hosaka M, Takahashi H, et al. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem. 2003;278(50):50301–8.CrossRef
34.
go back to reference Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, et al. Lipid droplet-binding protein TIP47 regulates hepatitis C virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9(4):e1003302.CrossRef Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, et al. Lipid droplet-binding protein TIP47 regulates hepatitis C virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9(4):e1003302.CrossRef
35.
go back to reference Choukhi A, Ung S, Wychowski C, Dubuisson J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol. 1998;72(5):3851–8.PubMedPubMedCentral Choukhi A, Ung S, Wychowski C, Dubuisson J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol. 1998;72(5):3851–8.PubMedPubMedCentral
36.
go back to reference Joyce MA, Walters KA, Lamb SE, Yeh MM, Zhu LF, et al. HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog. 2009;5(2):e1000291.CrossRef Joyce MA, Walters KA, Lamb SE, Yeh MM, Zhu LF, et al. HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog. 2009;5(2):e1000291.CrossRef
37.
go back to reference Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA. 2010;16(2):307–15.CrossRef Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA. 2010;16(2):307–15.CrossRef
38.
go back to reference Geng Y, Lu X, Wu X, Xue L, Wang X, et al. MicroRNA-27b suppresses helicobacter pylori-induced gastric tumorigenesis through negatively regulating Frizzled7. Oncol Rep. 2016;35(4):2441–50.CrossRef Geng Y, Lu X, Wu X, Xue L, Wang X, et al. MicroRNA-27b suppresses helicobacter pylori-induced gastric tumorigenesis through negatively regulating Frizzled7. Oncol Rep. 2016;35(4):2441–50.CrossRef
39.
go back to reference Liu F, Zhang S, Zhao Z, Mao X, Huang J, et al. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget. 2016;7(15):19666–79.PubMedPubMedCentral Liu F, Zhang S, Zhao Z, Mao X, Huang J, et al. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget. 2016;7(15):19666–79.PubMedPubMedCentral
40.
go back to reference Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Tachibana M, et al. MicroRNA miR-27 inhibits adenovirus infection by suppressing the expression of SNAP25 and TXN2. J Virol. 2017;91(12):e01265–18. Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Tachibana M, et al. MicroRNA miR-27 inhibits adenovirus infection by suppressing the expression of SNAP25 and TXN2. J Virol. 2017;91(12):e01265–18.
41.
go back to reference Hussain T, Zhao D, Shah SZA, Wang J, Yue R, et al. MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-beta-Activated Protein Kinase 1 Binding Protein 2. Front Immunol. 2017;8:1915.CrossRef Hussain T, Zhao D, Shah SZA, Wang J, Yue R, et al. MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-beta-Activated Protein Kinase 1 Binding Protein 2. Front Immunol. 2017;8:1915.CrossRef
42.
go back to reference Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 2012;8(2):e1002510.CrossRef Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 2012;8(2):e1002510.CrossRef
Metadata
Title
miR-27b-mediated suppression of aquaporin-11 expression in hepatocytes reduces HCV genomic RNA levels but not viral titers
Authors
Fuminori Sakurai
Rina Hashimoto
Chieko Inoue
Keisaku Wakabayashi
Tomohito Tsukamoto
Tsutomu Imaizumi
Taracena Gandara Marcos Andres
Eiko Sakai
Kanae Itsuki
Naoya Sakamoto
Takaji Wakita
Hiroyuki Mizuguchi
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Hepatitis C
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1160-6

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.