Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats

Authors: Benjarat Changyaleket, Zhao Zhong Chong, Randal O. Dull, Danop Nanegrungsunk, Haoliang Xu

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage.

Methods

Rats were subjected to SAH by endovascular perforation, and the expression of heparanase was determined by Western blot analysis and immunofluorescence in the ipsilateral brain cortex at 24 h post-SAH. Pial venule leukocyte trafficking was monitored by using intravital microscopy through cranial window.

Results

Our results indicated that, compared to their sham-surgical controls, the rats subjected to SAH showed marked elevation of heparanase expression in the ipsilateral brain cortex. The SAH-induced elevation of heparanase was accompanied by increased leukocyte trafficking in pial venules and significant neurological deficiency. Intracerebroventricular application of a selective heparanase inhibitor, OGT2115, which was initiated at 3 h after SAH, significantly suppressed the leukocyte trafficking and improved the neurological function.

Conclusions

Our findings indicate that heparanase plays an important role in mediating the neuroinflammatory response after SAH and contributes to SAH-related neurological deficits and early brain injury following SAH.
Literature
1.
go back to reference Kooijman E, Nijboer CH, van Velthoven CT, Mol W, Dijkhuizen RM, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One. 2014;9:e90584.CrossRefPubMedPubMedCentral Kooijman E, Nijboer CH, van Velthoven CT, Mol W, Dijkhuizen RM, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One. 2014;9:e90584.CrossRefPubMedPubMedCentral
2.
go back to reference Ayer R, Zhang J. Connecting the early brain injury of aneurysmal subarachnoid hemorrhage to clinical practice. Turk Neurosurg. 2010;20:159–66.PubMed Ayer R, Zhang J. Connecting the early brain injury of aneurysmal subarachnoid hemorrhage to clinical practice. Turk Neurosurg. 2010;20:159–66.PubMed
3.
go back to reference Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT. Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. 2012;109:315–29.CrossRefPubMed Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT. Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. 2012;109:315–29.CrossRefPubMed
4.
go back to reference Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.CrossRefPubMed Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.CrossRefPubMed
5.
go back to reference Vecchione C, Frati A, Di Pardo A, Cifelli G, Carnevale D, et al. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009;54:150–6.CrossRefPubMed Vecchione C, Frati A, Di Pardo A, Cifelli G, Carnevale D, et al. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009;54:150–6.CrossRefPubMed
6.
go back to reference Hanafy KA, Stuart RM, Khandji AG, Connolly ES, Badjatia N, et al. Relationship between brain interstitial fluid tumor necrosis factor-alpha and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2010;17:853–6.CrossRefPubMedPubMedCentral Hanafy KA, Stuart RM, Khandji AG, Connolly ES, Badjatia N, et al. Relationship between brain interstitial fluid tumor necrosis factor-alpha and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2010;17:853–6.CrossRefPubMedPubMedCentral
7.
go back to reference Jiang Y, Liu DW, Han XY, Dong YN, Gao J, et al. Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci. 2012;19:866–72.CrossRefPubMed Jiang Y, Liu DW, Han XY, Dong YN, Gao J, et al. Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci. 2012;19:866–72.CrossRefPubMed
8.
go back to reference Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, et al. Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm. Surg Neurol. 2005;64:201–5. discussion 205-206.CrossRefPubMed Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, et al. Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm. Surg Neurol. 2005;64:201–5. discussion 205-206.CrossRefPubMed
9.
go back to reference Clatterbuck RE, Gailloud P, Ogata L, Gebremariam A, Dietsch GN, et al. Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2003;99:376–82.CrossRefPubMed Clatterbuck RE, Gailloud P, Ogata L, Gebremariam A, Dietsch GN, et al. Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2003;99:376–82.CrossRefPubMed
10.
go back to reference Bowman G, Bonneau RH, Chinchilli VM, Tracey KJ, Cockroft KM. A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit Care. 2006;5:222–9.CrossRefPubMed Bowman G, Bonneau RH, Chinchilli VM, Tracey KJ, Cockroft KM. A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit Care. 2006;5:222–9.CrossRefPubMed
11.
go back to reference Nishino A, Umegaki M, Fujinaka T, Yoshimine T. Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res. 2010;32:873–8.CrossRefPubMed Nishino A, Umegaki M, Fujinaka T, Yoshimine T. Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res. 2010;32:873–8.CrossRefPubMed
12.
go back to reference Chyatte D, Sundt Jr TM. Response of chronic experimental cerebral vasospasm to methylprednisolone and dexamethasone. J Neurosurg. 1984;60:923–6.CrossRefPubMed Chyatte D, Sundt Jr TM. Response of chronic experimental cerebral vasospasm to methylprednisolone and dexamethasone. J Neurosurg. 1984;60:923–6.CrossRefPubMed
13.
go back to reference Yoneko M, Katayama Y, Moro N, Kamei J, Kojima J. Inhibitory effect of hydrocortisone on cerebral salt wasting after subarachnoid hemorrhage in rats. Methods Find Exp Clin Pharmacol. 2010;32:727–31.CrossRefPubMed Yoneko M, Katayama Y, Moro N, Kamei J, Kojima J. Inhibitory effect of hydrocortisone on cerebral salt wasting after subarachnoid hemorrhage in rats. Methods Find Exp Clin Pharmacol. 2010;32:727–31.CrossRefPubMed
14.
go back to reference Katayama Y, Haraoka J, Hirabayashi H, Kawamata T, Kawamoto K, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2373–5.CrossRefPubMed Katayama Y, Haraoka J, Hirabayashi H, Kawamata T, Kawamoto K, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2373–5.CrossRefPubMed
15.
go back to reference Chyatte D, Fode NC, Nichols DA, Sundt Jr TM. Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987;21:157–60.CrossRefPubMed Chyatte D, Fode NC, Nichols DA, Sundt Jr TM. Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987;21:157–60.CrossRefPubMed
16.
go back to reference Li J, Li JP, Zhang X, Lu Z, Yu SP, et al. Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res. 2012;1433:137–44.CrossRefPubMed Li J, Li JP, Zhang X, Lu Z, Yu SP, et al. Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res. 2012;1433:137–44.CrossRefPubMed
17.
go back to reference Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem. 2004;279:23536–41.CrossRefPubMed Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem. 2004;279:23536–41.CrossRefPubMed
18.
go back to reference Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000;60:4767–70.PubMed Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000;60:4767–70.PubMed
19.
go back to reference Navarro FP, Fares RP, Sanchez PE, Nadam J, Georges B, et al. Brain heparanase expression is up-regulated during postnatal development and hypoxia-induced neovascularization in adult rats. J Neurochem. 2008;105:34–45.CrossRefPubMed Navarro FP, Fares RP, Sanchez PE, Nadam J, Georges B, et al. Brain heparanase expression is up-regulated during postnatal development and hypoxia-induced neovascularization in adult rats. J Neurochem. 2008;105:34–45.CrossRefPubMed
20.
go back to reference Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99–108.PubMed Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99–108.PubMed
21.
go back to reference Sasaki N, Higashi N, Taka T, Nakajima M, Irimura T. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J Immunol. 2004;172:3830–5.CrossRefPubMed Sasaki N, Higashi N, Taka T, Nakajima M, Irimura T. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J Immunol. 2004;172:3830–5.CrossRefPubMed
22.
go back to reference Goldshmidt O, Zcharia E, Aingorn H, Guatta-Rangini Z, Atzmon R, et al. Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence. J Biol Chem. 2001;276:29178–87.CrossRefPubMed Goldshmidt O, Zcharia E, Aingorn H, Guatta-Rangini Z, Atzmon R, et al. Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence. J Biol Chem. 2001;276:29178–87.CrossRefPubMed
23.
go back to reference Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem. 2004;279:44084–92.CrossRefPubMed Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem. 2004;279:44084–92.CrossRefPubMed
24.
go back to reference Gilat D, Hershkoviz R, Goldkorn I, Cahalon L, Korner G, et al. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J Exp Med. 1995;181:1929–34.CrossRefPubMed Gilat D, Hershkoviz R, Goldkorn I, Cahalon L, Korner G, et al. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J Exp Med. 1995;181:1929–34.CrossRefPubMed
25.
go back to reference Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem. 1999;274:24153–60.CrossRefPubMed Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem. 1999;274:24153–60.CrossRefPubMed
26.
27.
go back to reference Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, et al. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003;17:1015–25.CrossRefPubMed Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, et al. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003;17:1015–25.CrossRefPubMed
28.
go back to reference Zhao H, Liu H, Chen Y, Xin X, Li J, et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res. 2006;66:8779–87.CrossRefPubMed Zhao H, Liu H, Chen Y, Xin X, Li J, et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res. 2006;66:8779–87.CrossRefPubMed
29.
go back to reference Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433–41.PubMed Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433–41.PubMed
30.
go back to reference Uno F, Fujiwara T, Takata Y, Ohtani S, Katsuda K, et al. Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res. 2001;61:7855–60.PubMed Uno F, Fujiwara T, Takata Y, Ohtani S, Katsuda K, et al. Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res. 2001;61:7855–60.PubMed
31.
go back to reference Gao J, Su L, Qin R, Chang Q, Huang T, et al. Transfection of antisense oligodeoxynucleotide inhibits heparanase gene expression and invasive ability of human pancreatic cancer cell in vitro. J Huazhong Univ Sci Technolog Med Sci. 2006;26:72–4.CrossRefPubMed Gao J, Su L, Qin R, Chang Q, Huang T, et al. Transfection of antisense oligodeoxynucleotide inhibits heparanase gene expression and invasive ability of human pancreatic cancer cell in vitro. J Huazhong Univ Sci Technolog Med Sci. 2006;26:72–4.CrossRefPubMed
32.
go back to reference Takahashi H, Matsumoto H, Kumon Y, Ohnishi T, Freeman C, et al. Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. Neurosci Lett. 2007;417:250–4.CrossRefPubMed Takahashi H, Matsumoto H, Kumon Y, Ohnishi T, Freeman C, et al. Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. Neurosci Lett. 2007;417:250–4.CrossRefPubMed
33.
go back to reference Xu HL, Garcia M, Testai F, Vetri F, Barabanova A, et al. Pharmacologic blockade of vascular adhesion protein-1 lessens neurologic dysfunction in rats subjected to subarachnoid hemorrhage. Brain Res. 2014;1586:83–9.CrossRefPubMed Xu HL, Garcia M, Testai F, Vetri F, Barabanova A, et al. Pharmacologic blockade of vascular adhesion protein-1 lessens neurologic dysfunction in rats subjected to subarachnoid hemorrhage. Brain Res. 2014;1586:83–9.CrossRefPubMed
34.
go back to reference Changyaleket B, Xu H, Vetri F, Valyi-Nagy T, Paisansathan C, et al. Intracerebroventricular application of S100B selectively impairs pial arteriolar dilating function in rats. Brain Res. 2016;1634:171–8.CrossRefPubMed Changyaleket B, Xu H, Vetri F, Valyi-Nagy T, Paisansathan C, et al. Intracerebroventricular application of S100B selectively impairs pial arteriolar dilating function in rats. Brain Res. 2016;1634:171–8.CrossRefPubMed
35.
go back to reference Courtney SM, Hay PA, Buck RT, Colville CS, Phillips DJ, et al. Furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acid derivatives: novel classes of heparanase inhibitor. Bioorg Med Chem Lett. 2005;15:2295–9.CrossRefPubMed Courtney SM, Hay PA, Buck RT, Colville CS, Phillips DJ, et al. Furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acid derivatives: novel classes of heparanase inhibitor. Bioorg Med Chem Lett. 2005;15:2295–9.CrossRefPubMed
36.
go back to reference Xu HL, Salter-Cid L, Linnik MD, Wang EY, Paisansathan C, et al. Vascular adhesion protein-1 plays an important role in postischemic inflammation and neuropathology in diabetic, estrogen-treated ovariectomized female rats subjected to transient forebrain ischemia. J Pharmacol Exp Ther. 2006;317:19–29.CrossRefPubMed Xu HL, Salter-Cid L, Linnik MD, Wang EY, Paisansathan C, et al. Vascular adhesion protein-1 plays an important role in postischemic inflammation and neuropathology in diabetic, estrogen-treated ovariectomized female rats subjected to transient forebrain ischemia. J Pharmacol Exp Ther. 2006;317:19–29.CrossRefPubMed
37.
go back to reference Xu HL, Pelligrino DA, Paisansathan C, Testai FD. Protective role of fingolimod (FTY720) in rats subjected to subarachnoid hemorrhage. J Neuroinflammation. 2015;12:16.CrossRefPubMedPubMedCentral Xu HL, Pelligrino DA, Paisansathan C, Testai FD. Protective role of fingolimod (FTY720) in rats subjected to subarachnoid hemorrhage. J Neuroinflammation. 2015;12:16.CrossRefPubMedPubMedCentral
38.
go back to reference Xu HL, Vetri F, Lee HK, Ye S, Paisansathan C, et al. Estrogen replacement therapy in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules via a RAGE-related process. Am J Physiol Heart Circ Physiol. 2009;297:H2059–67.CrossRefPubMedPubMedCentral Xu HL, Vetri F, Lee HK, Ye S, Paisansathan C, et al. Estrogen replacement therapy in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules via a RAGE-related process. Am J Physiol Heart Circ Physiol. 2009;297:H2059–67.CrossRefPubMedPubMedCentral
39.
go back to reference Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.CrossRefPubMed Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.CrossRefPubMed
40.
go back to reference Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37:1314–8.CrossRefPubMed Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37:1314–8.CrossRefPubMed
41.
go back to reference Cahill JZJ. Monofilament perforation: subarachnoid hemorrhage model. USA: Humana Press; 2009. Cahill JZJ. Monofilament perforation: subarachnoid hemorrhage model. USA: Humana Press; 2009.
42.
go back to reference Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 2002;22:393–403.CrossRefPubMed Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 2002;22:393–403.CrossRefPubMed
43.
go back to reference Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol. 2000;89:1937–42.PubMed Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol. 2000;89:1937–42.PubMed
45.
46.
go back to reference Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845–8.CrossRefPubMed Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845–8.CrossRefPubMed
47.
go back to reference Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–8.CrossRefPubMed Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–8.CrossRefPubMed
48.
go back to reference Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:2518–27.CrossRefPubMed Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:2518–27.CrossRefPubMed
49.
go back to reference Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33:181–9.CrossRefPubMed Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33:181–9.CrossRefPubMed
50.
go back to reference Beckouche N, Bignon M, Lelarge V, Mathivet T, Pichol-Thievend C, et al. The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis. Sci Signal. 2015;8:ra70.CrossRefPubMed Beckouche N, Bignon M, Lelarge V, Mathivet T, Pichol-Thievend C, et al. The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis. Sci Signal. 2015;8:ra70.CrossRefPubMed
51.
go back to reference Lever R, Rose MJ, McKenzie EA, Page CP. Heparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium. Am J Physiol Cell Physiol. 2014;306:C1184–90.CrossRefPubMed Lever R, Rose MJ, McKenzie EA, Page CP. Heparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium. Am J Physiol Cell Physiol. 2014;306:C1184–90.CrossRefPubMed
52.
go back to reference Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, et al. Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol. 2004;172:5185–93.CrossRefPubMed Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, et al. Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol. 2004;172:5185–93.CrossRefPubMed
53.
go back to reference Lad SP, Hegen H, Gupta G, Deisenhammer F, Steinberg GK. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2012;21:30–41.CrossRefPubMed Lad SP, Hegen H, Gupta G, Deisenhammer F, Steinberg GK. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2012;21:30–41.CrossRefPubMed
54.
go back to reference Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, et al. The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke. 1993;24:1993–2000. discussion 2000-1991.CrossRefPubMed Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, et al. The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke. 1993;24:1993–2000. discussion 2000-1991.CrossRefPubMed
55.
go back to reference Kooijman E, Nijboer CH, van Velthoven CT, Kavelaars A, Kesecioglu J, et al. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation. 2014;11:2.CrossRefPubMedPubMedCentral Kooijman E, Nijboer CH, van Velthoven CT, Kavelaars A, Kesecioglu J, et al. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation. 2014;11:2.CrossRefPubMedPubMedCentral
56.
go back to reference Kasius KM, Frijns CJ, Algra A, Rinkel GJ. Association of platelet and leukocyte counts with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis. 2010;29:576–83.CrossRefPubMed Kasius KM, Frijns CJ, Algra A, Rinkel GJ. Association of platelet and leukocyte counts with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis. 2010;29:576–83.CrossRefPubMed
57.
go back to reference McMahon CJ, Hopkins S, Vail A, King AT, Smith D, et al. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5:512–7.CrossRefPubMed McMahon CJ, Hopkins S, Vail A, King AT, Smith D, et al. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5:512–7.CrossRefPubMed
Metadata
Title
Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats
Authors
Benjarat Changyaleket
Zhao Zhong Chong
Randal O. Dull
Danop Nanegrungsunk
Haoliang Xu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0912-8

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue