Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Hemangioma | Primary research

lncRNA FOXD2-AS1 promotes hemangioma progression through the miR-324-3p/PDRG1 pathway

Authors: Tiancheng Zhao, Jiayu Zhang, Cong Ye, Leilei Tian, Yezhou Li

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Long non-coding RNAs (lncRNAs) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) are reported could function as tumor promoter in several cancers. However, its role in hemangioma was not reported to yet.

Methods

Expression level of FOXD2-AS1 in hemangioma tissues and cells was explored using quantitative reverse-time PCR. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound-healing assay, and transwell invasion assay were conducted to measure the roles of FOXD2-AS1. In addition, the levels of markers for proliferation and Epithelial-Mesenchymal Transition were investigated. Connection of FOXD2-AS1 and mcroRNA-324-3p (miR-324-3p) or miR-324-3p and p53 and DNA damage regulated 1 (PDRG1) was analyzed with bioinformatic analysis method and dual-luciferase activity reporter assay.

Results

Here, we found that FOXD2-AS1 was highly expressed in proliferating-phase hemangioma tissues compared with the involuting-phase hemangioma tissues. Functionally, FOXD2-AS1 knockdown suppressed cell proliferation, colony formation, migration, and invasion in vitro. Conversely, overexpression of FOXD2-AS1 promoted tumor growth in vitro. Mechanistically, FOXD2-AS1 inversely regulated miR-324-3p abundance in hemangioma cells. We also found FOXD2-AS1 acted as a competing endogenous RNA (ceRNA) by directly sponging miR-324-3p to regulate PDRG1 expression. In addition, the knockdown of PDRG1 reversed the stimulation effects of FOXD2-AS1 overexpression on HA cells.

Conclusion

To conclude, our study sheds novel light on the biological roles of FOXD2-AS1 in hemangioma, which may help the development of targeted therapy method for cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jia J, Huang X, Zhang WF, Zhao YF. Human monocyte-derived hemangioma-like endothelial cells: evidence from an in vitro study. Cardiovasc Pathol. 2008;17(4):212–8.CrossRef Jia J, Huang X, Zhang WF, Zhao YF. Human monocyte-derived hemangioma-like endothelial cells: evidence from an in vitro study. Cardiovasc Pathol. 2008;17(4):212–8.CrossRef
2.
go back to reference John M. Eisenberg center for clinical decisions and communications science. Management of infantile hemangioma. comparative effectiveness review summary guides for policymakers. Rockville (MD): Agency for Healthcare Research and Quality (US); 2011. John M. Eisenberg center for clinical decisions and communications science. Management of infantile hemangioma. comparative effectiveness review summary guides for policymakers. Rockville (MD): Agency for Healthcare Research and Quality (US); 2011.
3.
go back to reference Ji Y, Chen S, Li K, Li L, Xu C, Xiang B. Signaling pathways in the development of infantile hemangioma. J Hematol Oncol. 2014;7:13.CrossRef Ji Y, Chen S, Li K, Li L, Xu C, Xiang B. Signaling pathways in the development of infantile hemangioma. J Hematol Oncol. 2014;7:13.CrossRef
4.
go back to reference Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest. 2017;127(3):761–71.CrossRef Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest. 2017;127(3):761–71.CrossRef
5.
go back to reference Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-encoded peptides or proteins and cancer. Mol Ther. 2019;27(10):1718–25.CrossRef Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-encoded peptides or proteins and cancer. Mol Ther. 2019;27(10):1718–25.CrossRef
6.
go back to reference Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.CrossRef Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.CrossRef
7.
go back to reference Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253.CrossRef Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253.CrossRef
8.
go back to reference Wang B, Tang D, Zhang Z, Wang Z. Identification of aberrantly expressed lncRNA and the associated TF-mRNA network in hepatocellular carcinoma. J Cell Biochem. 2020;121(2):1491–503.CrossRef Wang B, Tang D, Zhang Z, Wang Z. Identification of aberrantly expressed lncRNA and the associated TF-mRNA network in hepatocellular carcinoma. J Cell Biochem. 2020;121(2):1491–503.CrossRef
9.
go back to reference Zhao X, Tang DY, Zuo X, Zhang TD, Wang C. Identification of lncRNA-miRNA-mRNA regulatory network associated with epithelial ovarian cancer cisplatin-resistant. J Cell Physiol. 2019;234(11):19886–94.CrossRef Zhao X, Tang DY, Zuo X, Zhang TD, Wang C. Identification of lncRNA-miRNA-mRNA regulatory network associated with epithelial ovarian cancer cisplatin-resistant. J Cell Physiol. 2019;234(11):19886–94.CrossRef
10.
go back to reference Ni W, Xia Y, Bi Y, Wen F, Hu D, Luo L. FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway. Aging (Albany NY). 2019;11(5):1427–39.CrossRef Ni W, Xia Y, Bi Y, Wen F, Hu D, Luo L. FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway. Aging (Albany NY). 2019;11(5):1427–39.CrossRef
11.
go back to reference Ge P, Cao L, Yao YJ, Jing RJ, Wang W, Li HJ. lncRNA FOXD2-AS1 confers cisplatin resistance of non-small-cell lung cancer via regulation of miR185-5p-SIX1 axis. Onco Targets Ther. 2019;12:6105–17.CrossRef Ge P, Cao L, Yao YJ, Jing RJ, Wang W, Li HJ. lncRNA FOXD2-AS1 confers cisplatin resistance of non-small-cell lung cancer via regulation of miR185-5p-SIX1 axis. Onco Targets Ther. 2019;12:6105–17.CrossRef
12.
go back to reference Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The diverse mechanisms of miRNAs and lncRNAs in the maintenance of liver cancer stem cells. Biomed Res Int. 2018;2018:8686027.PubMedPubMedCentral Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The diverse mechanisms of miRNAs and lncRNAs in the maintenance of liver cancer stem cells. Biomed Res Int. 2018;2018:8686027.PubMedPubMedCentral
13.
go back to reference Muhammad N, Bhattacharya S, Steele R, Ray RB. Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget. 2016;7(36):58595–605.CrossRef Muhammad N, Bhattacharya S, Steele R, Ray RB. Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget. 2016;7(36):58595–605.CrossRef
15.
go back to reference Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019;8(9):E1015.CrossRef Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019;8(9):E1015.CrossRef
16.
go back to reference Hu P, Zhou G, Zhang X, Song G, Zhan L, Cao Y. Long non-coding RNA Linc00483 accelerated tumorigenesis of cervical cancer by regulating miR-508-3p/RGS17 axis. Life Sci. 2019;234:116789.CrossRef Hu P, Zhou G, Zhang X, Song G, Zhan L, Cao Y. Long non-coding RNA Linc00483 accelerated tumorigenesis of cervical cancer by regulating miR-508-3p/RGS17 axis. Life Sci. 2019;234:116789.CrossRef
17.
go back to reference Sun GL, Li Z, Wang WZ, Chen Z, Zhang L, Li Q, Wei S, Li BW, Xu JH, Chen L, He ZY, Ying K, Zhang X, Xu H, Zhang DC, Xu ZK. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway. J Gastroenterol. 2018;53(6):725–39.CrossRef Sun GL, Li Z, Wang WZ, Chen Z, Zhang L, Li Q, Wei S, Li BW, Xu JH, Chen L, He ZY, Ying K, Zhang X, Xu H, Zhang DC, Xu ZK. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway. J Gastroenterol. 2018;53(6):725–39.CrossRef
18.
go back to reference Liu C, Li G, Yang N, Su Z, Zhang S, Deng T, Ren S, Lu S, Tian Y, Liu Y, Qiu Y. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell Int. 2017;17:2.CrossRef Liu C, Li G, Yang N, Su Z, Zhang S, Deng T, Ren S, Lu S, Tian Y, Liu Y, Qiu Y. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell Int. 2017;17:2.CrossRef
19.
go back to reference Yan D, Liu W, Liu Y, Luo M. LINC00261 suppresses human colon cancer progression via sponging miR-324-3p and inactivating the Wnt/β-catenin pathway. J Cell Physiol. 2019;234(12):22648–56.CrossRef Yan D, Liu W, Liu Y, Luo M. LINC00261 suppresses human colon cancer progression via sponging miR-324-3p and inactivating the Wnt/β-catenin pathway. J Cell Physiol. 2019;234(12):22648–56.CrossRef
20.
go back to reference Zhang YJ, Li JQ, Li HZ, Song H, Wei CS, Zhang SQ. PDRG1 gene silencing contributes to inhibit the growth and induce apoptosis of gastric cancer cells. Pathol Res Pract. 2019;215(10):152567.CrossRef Zhang YJ, Li JQ, Li HZ, Song H, Wei CS, Zhang SQ. PDRG1 gene silencing contributes to inhibit the growth and induce apoptosis of gastric cancer cells. Pathol Res Pract. 2019;215(10):152567.CrossRef
21.
go back to reference Tao Z, Chen S, Mao G, Xia H, Huang H, Ma H. The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother. 2016;83:1471–7.CrossRef Tao Z, Chen S, Mao G, Xia H, Huang H, Ma H. The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother. 2016;83:1471–7.CrossRef
22.
go back to reference Singh SV, Ajay AK, Mohammad N, Malvi P, Chaube B, Meena AS, Bhat MK. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis. 2015;6(10):e1934.CrossRef Singh SV, Ajay AK, Mohammad N, Malvi P, Chaube B, Meena AS, Bhat MK. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis. 2015;6(10):e1934.CrossRef
23.
go back to reference Singh S, Chouhan S, Mohammad N, Bhat MK. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett. 2017;591(10):1371–82.CrossRef Singh S, Chouhan S, Mohammad N, Bhat MK. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett. 2017;591(10):1371–82.CrossRef
24.
go back to reference Malvi P, Chaube B, Singh SV, Mohammad N, Vijayakumar MV, Singh S, Chouhan S, Bhat MK. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018;6:2.CrossRef Malvi P, Chaube B, Singh SV, Mohammad N, Vijayakumar MV, Singh S, Chouhan S, Bhat MK. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018;6:2.CrossRef
25.
go back to reference Bhattacharya S, Muhammad N, Steele R, Peng G, Ray RB. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget. 2016;7(22):33202–9.CrossRef Bhattacharya S, Muhammad N, Steele R, Peng G, Ray RB. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget. 2016;7(22):33202–9.CrossRef
26.
go back to reference Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget. 2017;8(39):66226–36.CrossRef Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget. 2017;8(39):66226–36.CrossRef
27.
go back to reference Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter melon enhances natural killer-mediated toxicity against head and neck cancer cells. Cancer Prev Res (Phila). 2017;10(6):337–44.CrossRef Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter melon enhances natural killer-mediated toxicity against head and neck cancer cells. Cancer Prev Res (Phila). 2017;10(6):337–44.CrossRef
Metadata
Title
lncRNA FOXD2-AS1 promotes hemangioma progression through the miR-324-3p/PDRG1 pathway
Authors
Tiancheng Zhao
Jiayu Zhang
Cong Ye
Leilei Tian
Yezhou Li
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01277-w

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine