Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Colorectal Cancer | Primary research

Overexpressed GATA3 enhances the sensitivity of colorectal cancer cells to oxaliplatin through regulating MiR-29b

Authors: Wei Wang, Mei Wang, Jing Xu, Fei Long, Xianbao Zhan

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

GATA binding protein 3 (GATA3) and miR-29b are related to colorectal cancer (CRC). The current study explored the regulatory relationship between GATA3 and miR-29b, and the mechanism of the two in the drug resistance of CRC cells to oxaliplatin.

Method

Apoptosis of CRC cells induced by oxaliplatin at various doses was detected by flow cytometry. CRC cells were separately transfected with overexpression and knockdown of GATA3, miR-29b agomir and antagomir, and treated by oxaliplatin to detect the cell viability and apoptosis by performing Cell Couting Kit-8 (CCK-8) and flow cytometry. The expression levels of GATA3, caspase3 and cleaved caspase3 were determined by Western blot, and the expression of miR-29b was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Animal experiments were performed to examine the changes of transplanted tumors in nude mouse xenograft studies and observed by in vivo imaging. TUNEL staining was performed to detect tumor cell apoptosis.

Result

Both GATA3 and miR-29b agomir inhibited the activity of the CRC cells, promoted apoptosis and Cleaved caspase3 expression, and reduced the resistance of the cells to chemotherapy drug oxaliplatin. Although GATA3 could up-regulate miR-29b expression, the tumor-suppressive effect of GATA3 was partially reversed by miR-29b antagomir. In vivo experiments showed that down-regulating the expression of GATA3 promoted the growth rate and volume of transplanted tumors, while overexpressing GATA3 had no significant effect on tumor growth. TUNEL staining results showed that knocking down or overexpression of GATA3 did not cause significant changes to apoptotic bodies of CRC cells, while oxaliplatin treatment increased the number of apoptotic bodies.

Conclusion

GATA3 inhibits the cell viability of CRC cells, promotes apoptosis, and reduces oxaliplatin resistance of CRC cells through regulating miR-29b.
Literature
2.
go back to reference The Lancet O. Colorectal cancer: a disease of the young? Lancet Oncol. 2017;18(4):413. The Lancet O. Colorectal cancer: a disease of the young? Lancet Oncol. 2017;18(4):413.
4.
go back to reference Wewala NT, Jameson MB. The role of oxaliplatin in chemoradiotherapy for rectal cancer. Asia-Pacific J Clin Oncol. 2017;13(6):341–2.CrossRef Wewala NT, Jameson MB. The role of oxaliplatin in chemoradiotherapy for rectal cancer. Asia-Pacific J Clin Oncol. 2017;13(6):341–2.CrossRef
5.
go back to reference Bano N, Najam R, Qazi F, Mateen A. Clinical features of oxaliplatin induced hypersensitivity reactions and therapeutic approaches. Asian Pacific J Cancer Prevention. 2016;17(4):1637–41.CrossRef Bano N, Najam R, Qazi F, Mateen A. Clinical features of oxaliplatin induced hypersensitivity reactions and therapeutic approaches. Asian Pacific J Cancer Prevention. 2016;17(4):1637–41.CrossRef
6.
go back to reference Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW, Huang CY. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018;233(7):5458–67.PubMedCrossRef Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW, Huang CY. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018;233(7):5458–67.PubMedCrossRef
7.
go back to reference Ceelen W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: the end of the road? Eur J Surg. 2019;45(3):400–2.CrossRef Ceelen W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: the end of the road? Eur J Surg. 2019;45(3):400–2.CrossRef
8.
go back to reference Takemoto N, Arai K, Miyatake S. Cutting edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J Immunol. 2002;169(8):4103–7.PubMedCrossRef Takemoto N, Arai K, Miyatake S. Cutting edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J Immunol. 2002;169(8):4103–7.PubMedCrossRef
9.
go back to reference Shahi P, Wang CY, Lawson DA, Slorach EM, Lu A, Yu Y, Lai MD, Gonzalez Velozo H, Werb Z. ZNF503/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression. Proc Natl Acad Sci USA. 2017;114(12):3169–74.PubMedCrossRefPubMedCentral Shahi P, Wang CY, Lawson DA, Slorach EM, Lu A, Yu Y, Lai MD, Gonzalez Velozo H, Werb Z. ZNF503/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression. Proc Natl Acad Sci USA. 2017;114(12):3169–74.PubMedCrossRefPubMedCentral
10.
go back to reference Yang M, Song L, Wang L, Yukht A, Ruther H, Li F, Qin M, Ghiasi H, Sharifi BG, Shah PK. Deficiency of GATA3-positive macrophages improves cardiac function following myocardial infarction or pressure overload hypertrophy. J Am Coll Cardiol. 2018;72(8):885–904.PubMedPubMedCentralCrossRef Yang M, Song L, Wang L, Yukht A, Ruther H, Li F, Qin M, Ghiasi H, Sharifi BG, Shah PK. Deficiency of GATA3-positive macrophages improves cardiac function following myocardial infarction or pressure overload hypertrophy. J Am Coll Cardiol. 2018;72(8):885–904.PubMedPubMedCentralCrossRef
11.
go back to reference Berg KB, Churg A. GATA3 immunohistochemistry for distinguishing sarcomatoid and desmoplastic mesothelioma from sarcomatoid carcinoma of the lung. Am J Surg Pathol. 2017;41(9):1221–5.PubMedCrossRef Berg KB, Churg A. GATA3 immunohistochemistry for distinguishing sarcomatoid and desmoplastic mesothelioma from sarcomatoid carcinoma of the lung. Am J Surg Pathol. 2017;41(9):1221–5.PubMedCrossRef
12.
go back to reference Huang B, Yang H, Cheng X, Wang D, Fu S, Shen W, Zhang Q, Zhang L, Xue Z, Li Y, et al. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res. 2017;77(12):3194–206.PubMedCrossRef Huang B, Yang H, Cheng X, Wang D, Fu S, Shen W, Zhang Q, Zhang L, Xue Z, Li Y, et al. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res. 2017;77(12):3194–206.PubMedCrossRef
13.
go back to reference Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosom Cancer. 2017;56(11):769–87.PubMedCrossRef Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosom Cancer. 2017;56(11):769–87.PubMedCrossRef
14.
go back to reference Rahman MR, Islam T, Gov E, Turanli B, Gulfidan G, Shahjaman M, Banu NA, Mollah MNH, Arga KY, Moni MA: Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis. Medicina (Kaunas, Lithuania) 2019, 55(1). Rahman MR, Islam T, Gov E, Turanli B, Gulfidan G, Shahjaman M, Banu NA, Mollah MNH, Arga KY, Moni MA: Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis. Medicina (Kaunas, Lithuania) 2019, 55(1).
15.
go back to reference Melo SA, Kalluri R. miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol. 2013;15(2):139–40.PubMedCrossRef Melo SA, Kalluri R. miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol. 2013;15(2):139–40.PubMedCrossRef
16.
go back to reference Zhang Z, Zou J, Wang GK, Zhang JT, Huang S, Qin YW, Jing Q. Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res. 2011;39(10):4387–95.PubMedPubMedCentralCrossRef Zhang Z, Zou J, Wang GK, Zhang JT, Huang S, Qin YW, Jing Q. Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res. 2011;39(10):4387–95.PubMedPubMedCentralCrossRef
17.
go back to reference Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer. 2010;103(2):275–84.PubMedPubMedCentralCrossRef Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer. 2010;103(2):275–84.PubMedPubMedCentralCrossRef
18.
go back to reference Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W, Li X. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 2015;6(38):40799–814.PubMedPubMedCentralCrossRef Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W, Li X. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 2015;6(38):40799–814.PubMedPubMedCentralCrossRef
19.
go back to reference Ivanovic RF, Viana NI, Morais DR, Silva IA, Leite KR, Pontes-Junior J, Inoue G, Nahas WC, Srougi M, Reis ST. miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression. Cancer Cell Int. 2018;18:18.PubMedPubMedCentralCrossRef Ivanovic RF, Viana NI, Morais DR, Silva IA, Leite KR, Pontes-Junior J, Inoue G, Nahas WC, Srougi M, Reis ST. miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression. Cancer Cell Int. 2018;18:18.PubMedPubMedCentralCrossRef
20.
go back to reference Shinden Y, Iguchi T, Akiyoshi S, Ueo H, Ueda M, Hirata H, Sakimura S, Uchi R, Takano Y, Eguchi H, et al. miR-29b is an indicator of prognosis in breast cancer patients. Mol Clin Oncol. 2015;3(4):919–23.PubMedPubMedCentralCrossRef Shinden Y, Iguchi T, Akiyoshi S, Ueo H, Ueda M, Hirata H, Sakimura S, Uchi R, Takano Y, Eguchi H, et al. miR-29b is an indicator of prognosis in breast cancer patients. Mol Clin Oncol. 2015;3(4):919–23.PubMedPubMedCentralCrossRef
21.
go back to reference Wang ZR, Wang Q, Sui Y, Zhang ZL, Jia FJ, Fan J, Zhang ZJ. Dexamethasone alleviates allergic asthma immature rat through Toll like receptor 4. Eur Rev Med Pharmacol Sci. 2018;22(1):184–9.PubMed Wang ZR, Wang Q, Sui Y, Zhang ZL, Jia FJ, Fan J, Zhang ZJ. Dexamethasone alleviates allergic asthma immature rat through Toll like receptor 4. Eur Rev Med Pharmacol Sci. 2018;22(1):184–9.PubMed
22.
go back to reference Tan YG, Zhang YF, Guo CJ, Yang M, Chen MY. Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pacific J Tropical Med. 2013;6(12):972–6.CrossRef Tan YG, Zhang YF, Guo CJ, Yang M, Chen MY. Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pacific J Tropical Med. 2013;6(12):972–6.CrossRef
23.
go back to reference Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13.PubMedPubMedCentralCrossRef Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13.PubMedPubMedCentralCrossRef
24.
go back to reference Zhang K, Cai HX, Gao S, Yang GL, Deng HT, Xu GC, Han J, Zhang QZ, Li LY. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 2016;7(43):69436–49.PubMedPubMedCentralCrossRef Zhang K, Cai HX, Gao S, Yang GL, Deng HT, Xu GC, Han J, Zhang QZ, Li LY. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 2016;7(43):69436–49.PubMedPubMedCentralCrossRef
25.
go back to reference Zhou M, Liu W, Ma S, Cao H, Peng X, Guo L, Zhou X, Zheng L, Guo L, Wan M, et al. A novel onco-miR-365 induces cutaneous squamous cell carcinoma. Carcinogenesis. 2013;34(7):1653–9.PubMedPubMedCentralCrossRef Zhou M, Liu W, Ma S, Cao H, Peng X, Guo L, Zhou X, Zheng L, Guo L, Wan M, et al. A novel onco-miR-365 induces cutaneous squamous cell carcinoma. Carcinogenesis. 2013;34(7):1653–9.PubMedPubMedCentralCrossRef
27.
go back to reference Yuan JS, Wang D, Stewart CN Jr. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J. 2008;3(1):112–23.PubMedCrossRef Yuan JS, Wang D, Stewart CN Jr. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J. 2008;3(1):112–23.PubMedCrossRef
28.
go back to reference Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci USA. 2016;113(46):13138–43.PubMedCrossRefPubMedCentral Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci USA. 2016;113(46):13138–43.PubMedCrossRefPubMedCentral
30.
go back to reference Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods Mol Biol. 2012;887:41–7.PubMedCrossRef Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods Mol Biol. 2012;887:41–7.PubMedCrossRef
31.
go back to reference Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ, Huang MC. GATA3 interacts with and stabilizes HIF-1alpha to enhance cancer cell invasiveness. Oncogene. 2017;36(30):4243–52.PubMedPubMedCentralCrossRef Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ, Huang MC. GATA3 interacts with and stabilizes HIF-1alpha to enhance cancer cell invasiveness. Oncogene. 2017;36(30):4243–52.PubMedPubMedCentralCrossRef
32.
go back to reference Byrne DJ, Deb S, Takano EA, Fox SB. GATA3 expression in triple-negative breast cancers. Histopathology. 2017;71(1):63–71.PubMedCrossRef Byrne DJ, Deb S, Takano EA, Fox SB. GATA3 expression in triple-negative breast cancers. Histopathology. 2017;71(1):63–71.PubMedCrossRef
33.
go back to reference Gagliani N, Huber S. Basic aspects of T helper cell differentiation. Methods Mol Biol. 2017;1514:19–30.PubMedCrossRef Gagliani N, Huber S. Basic aspects of T helper cell differentiation. Methods Mol Biol. 2017;1514:19–30.PubMedCrossRef
34.
go back to reference Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. Adv Exp Med Biol. 2014;841:15–44.PubMedCrossRef Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. Adv Exp Med Biol. 2014;841:15–44.PubMedCrossRef
35.
go back to reference Mohammed KH, Siddiqui MT, Cohen C. GATA3 immunohistochemical expression in invasive urothelial carcinoma. Urol Oncol. 2016;34(10):e439-432.e413.CrossRef Mohammed KH, Siddiqui MT, Cohen C. GATA3 immunohistochemical expression in invasive urothelial carcinoma. Urol Oncol. 2016;34(10):e439-432.e413.CrossRef
36.
go back to reference Jiang X, Chen Y, Du E, Yang K, Zhang Z, Qi S, Xu Y. GATA3-driven expression of miR-503 inhibits prostate cancer progression by repressing ZNF217 expression. Cell Signal. 2016;28(9):1216–24.PubMedCrossRef Jiang X, Chen Y, Du E, Yang K, Zhang Z, Qi S, Xu Y. GATA3-driven expression of miR-503 inhibits prostate cancer progression by repressing ZNF217 expression. Cell Signal. 2016;28(9):1216–24.PubMedCrossRef
37.
go back to reference Asch-Kendrick R, Cimino-Mathews A. The role of GATA3 in breast carcinomas: a review. Hum Pathol. 2016;48:37–47.PubMedCrossRef Asch-Kendrick R, Cimino-Mathews A. The role of GATA3 in breast carcinomas: a review. Hum Pathol. 2016;48:37–47.PubMedCrossRef
39.
go back to reference Choudhary GS, Al-Harbi S, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol. 2015;1219:1–9.PubMedCrossRef Choudhary GS, Al-Harbi S, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol. 2015;1219:1–9.PubMedCrossRef
40.
go back to reference Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, Li C, Wen T. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res. 2017;23(21):6673–85.PubMedCrossRef Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, Li C, Wen T. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res. 2017;23(21):6673–85.PubMedCrossRef
41.
go back to reference Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. 2016;138(11):2570–8.PubMedCrossRef Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. 2016;138(11):2570–8.PubMedCrossRef
42.
go back to reference Lin LL, Wang W, Hu Z, Wang LW, Chang J, Qian H. Negative feedback of miR-29 family TET1 involves in hepatocellular cancer. Med Oncol. 2014;31(12):291.PubMedCrossRef Lin LL, Wang W, Hu Z, Wang LW, Chang J, Qian H. Negative feedback of miR-29 family TET1 involves in hepatocellular cancer. Med Oncol. 2014;31(12):291.PubMedCrossRef
43.
go back to reference Starlard-Davenport A, Kutanzi K, Tryndyak V, Word B, Lyn-Cook B. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: a novel epigenetic therapeutic approach. J Carcinogenesis. 2013;12:15.CrossRef Starlard-Davenport A, Kutanzi K, Tryndyak V, Word B, Lyn-Cook B. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: a novel epigenetic therapeutic approach. J Carcinogenesis. 2013;12:15.CrossRef
44.
go back to reference Dai F, Zhang Y, Zhu X, Shan N, Chen Y. Anticancer role of MUC1 aptamer-miR-29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation. Targeted Oncol. 2012;7(4):217–25.CrossRef Dai F, Zhang Y, Zhu X, Shan N, Chen Y. Anticancer role of MUC1 aptamer-miR-29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation. Targeted Oncol. 2012;7(4):217–25.CrossRef
45.
go back to reference Li L, Guo Y, Chen Y, Wang J, Zhen L, Guo X, Liu J, Jing C. The diagnostic efficacy and biological effects of microRNA-29b for colon cancer. Technol Cancer Res Treat. 2016;15(6):772–9.PubMedCrossRef Li L, Guo Y, Chen Y, Wang J, Zhen L, Guo X, Liu J, Jing C. The diagnostic efficacy and biological effects of microRNA-29b for colon cancer. Technol Cancer Res Treat. 2016;15(6):772–9.PubMedCrossRef
47.
go back to reference Fu Q, Zhang J, Huang G, Zhang Y, Zhao M, Zhang Y, Xie J: microRNA-29b inhibits cell growth and promotes sensitivity to oxaliplatin in colon cancer by targeting FOLR1. BioFactors (Oxford, England) 2019. Fu Q, Zhang J, Huang G, Zhang Y, Zhao M, Zhang Y, Xie J: microRNA-29b inhibits cell growth and promotes sensitivity to oxaliplatin in colon cancer by targeting FOLR1. BioFactors (Oxford, England) 2019.
48.
go back to reference Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharmacal Res. 2014;37(1):4–15.CrossRef Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharmacal Res. 2014;37(1):4–15.CrossRef
49.
go back to reference Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leukemia Lymphoma. 2015;56(1):26–33.PubMedCrossRef Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leukemia Lymphoma. 2015;56(1):26–33.PubMedCrossRef
Metadata
Title
Overexpressed GATA3 enhances the sensitivity of colorectal cancer cells to oxaliplatin through regulating MiR-29b
Authors
Wei Wang
Mei Wang
Jing Xu
Fei Long
Xianbao Zhan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01424-3

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine